mindspore/tests/ut/python/dataset/test_random_apply.py

186 lines
7.4 KiB
Python

# Copyright 2020-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Test RandomApply op in Dataset
"""
import numpy as np
import mindspore.common.dtype as mstype
import mindspore.dataset as ds
import mindspore.dataset.transforms as data_trans
import mindspore.dataset.vision as vision
from mindspore import log as logger
from util import visualize_list, config_get_set_seed, \
config_get_set_num_parallel_workers, save_and_check_md5_pil
GENERATE_GOLDEN = False
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def test_random_apply_c():
"""
Feature: RandomApply Op
Description: Test C++ implementation, both valid and invalid input
Expectation: Dataset pipeline runs successfully and results are verified for valid input.
Invalid input is detected.
"""
original_seed = config_get_set_seed(0)
def test_config(arr, op_list, prob=0.5):
try:
data = ds.NumpySlicesDataset(arr, column_names="col", shuffle=False)
data = data.map(operations=data_trans.RandomApply(op_list, prob), input_columns=["col"])
res = []
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
res.append(i["col"].tolist())
return res
except (TypeError, ValueError) as e:
return str(e)
res1 = test_config([[0, 1]], [data_trans.Duplicate(), data_trans.Concatenate()])
assert res1 in [[[0, 1]], [[0, 1, 0, 1]]]
# test single nested compose
assert test_config([[0, 1, 2]], [
data_trans.Compose([data_trans.Duplicate(), data_trans.Concatenate(), data_trans.Slice([0, 1, 2])])]) == \
[[0, 1, 2]]
assert test_config([[0, 1, 2]], [
data_trans.Compose(
[data_trans.Duplicate(), data_trans.Concatenate(), lambda x: x, data_trans.Slice([0, 1, 2])])]) == \
[[0, 1, 2]]
# test exception
assert "is not of type [<class 'list'>]" in test_config([1, 0], data_trans.TypeCast(mstype.int32))
assert "Input prob is not within the required interval" in test_config([0, 1], [data_trans.Slice([0, 1])], 1.1)
assert "is not of type [<class 'float'>, <class 'int'>]" in test_config([1, 0], [data_trans.TypeCast(mstype.int32)],
None)
assert "transforms list with value None is not of type [<class 'list'>]" in test_config([1, 0], None)
assert "is neither a transforms op (TensorOperation) nor a callable pyfunc" in \
test_config([[0, 1, 2]], [data_trans.Duplicate(), data_trans.Concatenate(), "zyx"])
# Restore configuration
ds.config.set_seed(original_seed)
def test_random_apply_op(plot=False):
"""
Feature: RandomApply op
Description: Test RandomApply in Python transformations
Expectation: The dataset is processed as expected
"""
logger.info("test_random_apply_op")
# define map operations
transforms_list = [vision.CenterCrop(64), vision.RandomRotation(30)]
transforms1 = [
vision.Decode(True),
data_trans.RandomApply(transforms_list, prob=0.6),
vision.ToTensor()
]
transform1 = data_trans.Compose(transforms1)
transforms2 = [
vision.Decode(True),
vision.ToTensor()
]
transform2 = data_trans.Compose(transforms2)
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data1 = data1.map(operations=transform1, input_columns=["image"])
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(operations=transform2, input_columns=["image"])
image_apply = []
image_original = []
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image_apply.append(image1)
image_original.append(image2)
if plot:
visualize_list(image_original, image_apply)
def test_random_apply_md5():
"""
Feature: RandomApply op
Description: Test RandomApply op with md5 check
Expectation: Passes the md5 check test
"""
logger.info("test_random_apply_md5")
original_seed = config_get_set_seed(10)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# define map operations
transforms_list = [vision.CenterCrop(64), vision.RandomRotation(30)]
transforms = [
vision.Decode(True),
# Note: using default value "prob=0.5"
data_trans.RandomApply(transforms_list),
vision.ToTensor()
]
transform = data_trans.Compose(transforms)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data = data.map(operations=transform, input_columns=["image"])
# check results with md5 comparison
filename = "random_apply_01_result.npz"
save_and_check_md5_pil(data, filename, generate_golden=GENERATE_GOLDEN)
# Restore configuration
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers((original_num_parallel_workers))
def test_random_apply_exception_random_crop_badinput():
"""
Feature: RandomApply op
Description: Test RandomApply with invalid input for one of the transform functions
Expectation: Correct error is raised as expected
"""
logger.info("test_random_apply_exception_random_crop_badinput")
original_seed = config_get_set_seed(200)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# define map operations
transforms_list = [vision.Resize([32, 32]),
vision.RandomCrop(100), # crop size > image size
vision.RandomRotation(30)]
transforms = [
vision.Decode(True),
data_trans.RandomApply(transforms_list, prob=0.6),
vision.ToTensor()
]
transform = data_trans.Compose(transforms)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data = data.map(operations=transform, input_columns=["image"])
try:
_ = data.create_dict_iterator(num_epochs=1).__next__()
except RuntimeError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Crop size" in str(e)
# Restore configuration
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
if __name__ == '__main__':
test_random_apply_c()
test_random_apply_op(plot=True)
test_random_apply_md5()
test_random_apply_exception_random_crop_badinput()