mindspore/tests/ut/python/dataset/test_ngram_op.py

144 lines
6.0 KiB
Python

# Copyright 2020-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing Ngram in mindspore.dataset
"""
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.text as text
def test_ngram_callable():
"""
Feature: Ngram op
Description: Test Ngram op basic usage with valid input
Expectation: Output is the same as expected output
"""
op = text.Ngram(2, separator="-")
input1 = " WildRose Country"
input1 = np.array(input1.split(" "), dtype='S')
expect1 = ['-WildRose', 'WildRose-Country']
result1 = op(input1)
assert np.array_equal(result1, expect1)
input2 = ["WildRose Country", "Canada's Ocean Playground", "Land of Living Skies"]
expect2 = ["WildRose Country-Canada's Ocean Playground", "Canada's Ocean Playground-Land of Living Skies"]
result2 = op(input2)
assert np.array_equal(result2, expect2)
def test_multiple_ngrams():
"""
Feature: Ngram op
Description: Test Ngram op where n is a list of integers
Expectation: Output is the same as expected output
"""
plates_mottos = ["WildRose Country", "Canada's Ocean Playground", "Land of Living Skies"]
n_gram_mottos = []
n_gram_mottos.append(
['WildRose', 'Country', '_ WildRose', 'WildRose Country', 'Country _', '_ _ WildRose', '_ WildRose Country',
'WildRose Country _', 'Country _ _'])
n_gram_mottos.append(
["Canada's", 'Ocean', 'Playground', "_ Canada's", "Canada's Ocean", 'Ocean Playground', 'Playground _',
"_ _ Canada's", "_ Canada's Ocean", "Canada's Ocean Playground", 'Ocean Playground _', 'Playground _ _'])
n_gram_mottos.append(
['Land', 'of', 'Living', 'Skies', '_ Land', 'Land of', 'of Living', 'Living Skies', 'Skies _', '_ _ Land',
'_ Land of', 'Land of Living', 'of Living Skies', 'Living Skies _', 'Skies _ _'])
def gen(texts):
for line in texts:
yield (np.array(line.split(" "), dtype='S'),)
dataset = ds.GeneratorDataset(gen(plates_mottos), column_names=["text"])
dataset = dataset.map(operations=text.Ngram([1, 2, 3], ("_", 2), ("_", 2), " "), input_columns="text")
i = 0
for data in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
assert [d.decode("utf8") for d in data["text"]] == n_gram_mottos[i]
i += 1
def test_simple_ngram():
"""
Feature: Ngram op
Description: Test Ngram op with only one n value
Expectation: Output is the same as expected output
"""
plates_mottos = ["Friendly Manitoba", "Yours to Discover", "Land of Living Skies",
"Birthplace of the Confederation"]
n_gram_mottos = [[""]]
n_gram_mottos.append(["Yours to Discover"])
n_gram_mottos.append(['Land of Living', 'of Living Skies'])
n_gram_mottos.append(['Birthplace of the', 'of the Confederation'])
def gen(texts):
for line in texts:
yield (np.array(line.split(" "), dtype='S'),)
dataset = ds.GeneratorDataset(gen(plates_mottos), column_names=["text"])
dataset = dataset.map(operations=text.Ngram(3, separator=" "), input_columns="text")
i = 0
for data in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
assert [d.decode("utf8") for d in data["text"]] == n_gram_mottos[i], i
i += 1
def test_corner_cases():
"""
Feature: Ngram op
Description: Test Ngram op with various corner cases and exceptions
Expectation: Output is the same as expected output or error is raised when appropriate
"""
def test_config(input_line, n, l_pad=("", 0), r_pad=("", 0), sep=" "):
def gen(texts):
yield (np.array(texts.split(" "), dtype='S'),)
try:
dataset = ds.GeneratorDataset(gen(input_line), column_names=["text"])
dataset = dataset.map(operations=text.Ngram(n, l_pad, r_pad, separator=sep), input_columns=["text"])
for data in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
return [d.decode("utf8") for d in data["text"]]
except (ValueError, TypeError) as e:
return str(e)
# test tensor length smaller than n
assert test_config("Lone Star", [2, 3, 4, 5]) == ["Lone Star", "", "", ""]
# test empty separator
assert test_config("Beautiful British Columbia", 2, sep="") == ['BeautifulBritish', 'BritishColumbia']
# test separator with longer length
assert test_config("Beautiful British Columbia", 3, sep="^-^") == ['Beautiful^-^British^-^Columbia']
# test left pad != right pad
assert test_config("Lone Star", 4, ("The", 1), ("State", 1)) == ['The Lone Star State']
# test invalid n
assert "gram[1] with value [1] is not of type [<class 'int'>]" in test_config("Yours to Discover", [1, [1]])
assert "n needs to be a non-empty list" in test_config("Yours to Discover", [])
# test invalid pad
assert "padding width need to be positive numbers" in test_config("Yours to Discover", [1], ("str", -1))
assert "pad needs to be a tuple of (str, int)" in test_config("Yours to Discover", [1], ("str", "rts"))
# test 0 as in valid input
assert "gram_0 must be greater than 0" in test_config("Yours to Discover", 0)
assert "gram_0 must be greater than 0" in test_config("Yours to Discover", [0])
assert "gram_1 must be greater than 0" in test_config("Yours to Discover", [1, 0])
if __name__ == '__main__':
test_ngram_callable()
test_multiple_ngrams()
test_simple_ngram()
test_corner_cases()