mindspore/tests/ut/python/dataset/test_minddataset_sampler.py

964 lines
42 KiB
Python

# Copyright 2019-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
This is the test module for mindrecord
"""
import os
import pytest
import numpy as np
import mindspore.dataset as ds
from mindspore import log as logger
from mindspore.dataset.text import to_str
from mindspore.mindrecord import FileWriter
FILES_NUM = 4
CV_DIR_NAME = "../data/mindrecord/testImageNetData"
@pytest.fixture
def add_and_remove_cv_file():
"""add/remove cv file"""
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
paths = ["{}{}".format(file_name, str(x).rjust(1, '0'))
for x in range(FILES_NUM)]
try:
for x in paths:
if os.path.exists("{}".format(x)):
os.remove("{}".format(x))
if os.path.exists("{}.db".format(x)):
os.remove("{}.db".format(x))
writer = FileWriter(file_name, FILES_NUM)
data = get_data(CV_DIR_NAME, True)
cv_schema_json = {"id": {"type": "int32"},
"file_name": {"type": "string"},
"label": {"type": "int32"},
"data": {"type": "bytes"}}
writer.add_schema(cv_schema_json, "img_schema")
writer.add_index(["file_name", "label"])
writer.write_raw_data(data)
writer.commit()
yield "yield_cv_data"
except Exception as error:
for x in paths:
os.remove("{}".format(x))
os.remove("{}.db".format(x))
raise error
else:
for x in paths:
os.remove("{}".format(x))
os.remove("{}.db".format(x))
def test_cv_minddataset_pk_sample_no_column(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test read MindDataset with PKSampler without any columns_list in the dataset
Expectation: Output is equal to the expected output
"""
num_readers = 4
sampler = ds.PKSampler(2)
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
data_set = ds.MindDataset(file_name + "0", None, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 6
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info("-------------- item[file_name]: \
{}------------------------".format(to_str(item["file_name"])))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
def test_cv_minddataset_pk_sample_basic(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test basic read MindDataset with PKSampler
Expectation: Output is equal to the expected output
"""
columns_list = ["data", "file_name", "label"]
num_readers = 4
sampler = ds.PKSampler(2)
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
data_set = ds.MindDataset(file_name + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 6
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info("-------------- item[data]: \
{}------------------------".format(item["data"][:10]))
logger.info("-------------- item[file_name]: \
{}------------------------".format(to_str(item["file_name"])))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
def test_cv_minddataset_pk_sample_shuffle(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test read MindDataset with PKSampler with shuffle=True
Expectation: Output is equal to the expected output
"""
columns_list = ["data", "file_name", "label"]
num_readers = 4
sampler = ds.PKSampler(3, None, True)
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
data_set = ds.MindDataset(file_name + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 9
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info("-------------- item[file_name]: \
{}------------------------".format(to_str(item["file_name"])))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
assert num_iter == 9
def test_cv_minddataset_pk_sample_shuffle_1(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test read MindDataset with PKSampler with shuffle=True and
with num_samples larger than get_dataset_size
Expectation: Output is equal to the expected output
"""
columns_list = ["data", "file_name", "label"]
num_readers = 4
sampler = ds.PKSampler(3, None, True, 'label', 5)
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
data_set = ds.MindDataset(file_name + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 5
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info("-------------- item[file_name]: \
{}------------------------".format(to_str(item["file_name"])))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
assert num_iter == 5
def test_cv_minddataset_pk_sample_shuffle_2(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test read MindDataset with PKSampler with shuffle=True and
with num_samples larger than get_dataset_size
Expectation: Output is equal to the expected output
"""
columns_list = ["data", "file_name", "label"]
num_readers = 4
sampler = ds.PKSampler(3, None, True, 'label', 10)
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
data_set = ds.MindDataset(file_name + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 9
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info("-------------- item[file_name]: \
{}------------------------".format(to_str(item["file_name"])))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
assert num_iter == 9
def test_cv_minddataset_pk_sample_out_of_range_0(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test read MindDataset with PKSampler with shuffle=True and num_val that is out of range
Expectation: Output is equal to the expected output
"""
columns_list = ["data", "file_name", "label"]
num_readers = 4
sampler = ds.PKSampler(5, None, True)
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
data_set = ds.MindDataset(file_name + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 15
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info("-------------- item[file_name]: \
{}------------------------".format(to_str(item["file_name"])))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
assert num_iter == 15
def test_cv_minddataset_pk_sample_out_of_range_1(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test read MindDataset with PKSampler with shuffle=True, num_val that is out of range, and
num_samples larger than get_dataset_size
Expectation: Output is equal to the expected output
"""
columns_list = ["data", "file_name", "label"]
num_readers = 4
sampler = ds.PKSampler(5, None, True, 'label', 20)
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
data_set = ds.MindDataset(file_name + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 15
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info("-------------- item[file_name]: \
{}------------------------".format(to_str(item["file_name"])))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
assert num_iter == 15
def test_cv_minddataset_pk_sample_out_of_range_2(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test read MindDataset with PKSampler with shuffle=True, num_val that is out of range, and
num_samples that is equal to get_dataset_size
Expectation: Output is equal to the expected output
"""
columns_list = ["data", "file_name", "label"]
num_readers = 4
sampler = ds.PKSampler(5, None, True, 'label', 10)
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
data_set = ds.MindDataset(file_name + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 10
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info("-------------- item[file_name]: \
{}------------------------".format(to_str(item["file_name"])))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
assert num_iter == 10
def test_cv_minddataset_subset_random_sample_basic(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test basic read MindDataset with SubsetRandomSampler
Expectation: Output is equal to the expected output
"""
columns_list = ["data", "file_name", "label"]
num_readers = 4
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
indices = [1, 2, 3, 5, 7]
samplers = (ds.SubsetRandomSampler(indices), ds.SubsetSampler(indices))
for sampler in samplers:
data_set = ds.MindDataset(file_name + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 5
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
assert num_iter == 5
def test_cv_minddataset_subset_random_sample_replica(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test read MindDataset with SubsetRandomSampler with duplicate index in the indices
Expectation: Output is equal to the expected output
"""
columns_list = ["data", "file_name", "label"]
num_readers = 4
indices = [1, 2, 2, 5, 7, 9]
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
samplers = ds.SubsetRandomSampler(indices), ds.SubsetSampler(indices)
for sampler in samplers:
data_set = ds.MindDataset(file_name + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 6
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
assert num_iter == 6
def test_cv_minddataset_subset_random_sample_empty(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test read MindDataset with SubsetRandomSampler with empty indices
Expectation: Output is equal to the expected output
"""
columns_list = ["data", "file_name", "label"]
num_readers = 4
indices = []
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
samplers = ds.SubsetRandomSampler(indices), ds.SubsetSampler(indices)
for sampler in samplers:
data_set = ds.MindDataset(file_name + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 0
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
assert num_iter == 0
def test_cv_minddataset_subset_random_sample_out_of_range(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test read MindDataset with SubsetRandomSampler with indices that are out of range
Expectation: Output is equal to the expected output
"""
columns_list = ["data", "file_name", "label"]
num_readers = 4
indices = [1, 2, 4, 11, 13]
samplers = ds.SubsetRandomSampler(indices), ds.SubsetSampler(indices)
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
for sampler in samplers:
data_set = ds.MindDataset(file_name + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 5
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
assert num_iter == 5
def test_cv_minddataset_subset_random_sample_negative(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test read MindDataset with SubsetRandomSampler with negative indices
Expectation: Output is equal to the expected output
"""
columns_list = ["data", "file_name", "label"]
num_readers = 4
indices = [1, 2, 4, -1, -2]
samplers = ds.SubsetRandomSampler(indices), ds.SubsetSampler(indices)
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
for sampler in samplers:
data_set = ds.MindDataset(file_name + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 5
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
assert num_iter == 5
def test_cv_minddataset_random_sampler_basic(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test basic read MindDataset with RandomSampler
Expectation: Output is equal to the expected output
"""
data = get_data(CV_DIR_NAME, True)
columns_list = ["data", "file_name", "label"]
num_readers = 4
sampler = ds.RandomSampler()
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
data_set = ds.MindDataset(file_name + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 10
num_iter = 0
new_dataset = []
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
new_dataset.append(item['file_name'])
assert num_iter == 10
assert new_dataset != [x['file_name'] for x in data]
def test_cv_minddataset_random_sampler_repeat(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test read MindDataset with RandomSampler followed by Repeat op
Expectation: Output is equal to the expected output
"""
columns_list = ["data", "file_name", "label"]
num_readers = 4
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
sampler = ds.RandomSampler()
data_set = ds.MindDataset(file_name + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 10
ds1 = data_set.repeat(3)
num_iter = 0
epoch1_dataset = []
epoch2_dataset = []
epoch3_dataset = []
for item in ds1.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
if num_iter <= 10:
epoch1_dataset.append(item['file_name'])
elif num_iter <= 20:
epoch2_dataset.append(item['file_name'])
else:
epoch3_dataset.append(item['file_name'])
assert num_iter == 30
assert epoch1_dataset not in (epoch2_dataset, epoch3_dataset)
assert epoch2_dataset not in (epoch1_dataset, epoch3_dataset)
assert epoch3_dataset not in (epoch1_dataset, epoch2_dataset)
def test_cv_minddataset_random_sampler_replacement(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test read MindDataset with RandomSampler with replacement=True
Expectation: Output is equal to the expected output
"""
columns_list = ["data", "file_name", "label"]
num_readers = 4
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
sampler = ds.RandomSampler(replacement=True, num_samples=5)
data_set = ds.MindDataset(file_name + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 5
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
assert num_iter == 5
def test_cv_minddataset_random_sampler_replacement_false_1(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test read MindDataset with RandomSampler with replacement=False and num_samples <= dataset size
Expectation: Output is equal to the expected output
"""
columns_list = ["data", "file_name", "label"]
num_readers = 4
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
sampler = ds.RandomSampler(replacement=False, num_samples=2)
data_set = ds.MindDataset(file_name + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 2
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
assert num_iter == 2
def test_cv_minddataset_random_sampler_replacement_false_2(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test read MindDataset with RandomSampler with replacement=False and num_samples > dataset size
Expectation: Output is equal to the expected output
"""
columns_list = ["data", "file_name", "label"]
num_readers = 4
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
sampler = ds.RandomSampler(replacement=False, num_samples=20)
data_set = ds.MindDataset(file_name + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 10
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
assert num_iter == 10
def test_cv_minddataset_sequential_sampler_basic(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test basic read MindDataset with SequentialSampler
Expectation: Output is equal to the expected output
"""
data = get_data(CV_DIR_NAME, True)
columns_list = ["data", "file_name", "label"]
num_readers = 4
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
sampler = ds.SequentialSampler(1, 4)
data_set = ds.MindDataset(file_name + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 4
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
assert item['file_name'] == np.array(
data[num_iter + 1]['file_name'], dtype='S')
num_iter += 1
assert num_iter == 4
def test_cv_minddataset_sequential_sampler_offeset(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test read MindDataset with SequentialSampler with offset on starting index
Expectation: Output is equal to the expected output
"""
data = get_data(CV_DIR_NAME, True)
columns_list = ["data", "file_name", "label"]
num_readers = 4
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
sampler = ds.SequentialSampler(2, 10)
data_set = ds.MindDataset(file_name + "0", columns_list, num_readers,
sampler=sampler)
dataset_size = data_set.get_dataset_size()
assert dataset_size == 10
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
assert item['file_name'] == np.array(
data[(num_iter + 2) % dataset_size]['file_name'], dtype='S')
num_iter += 1
assert num_iter == 10
def test_cv_minddataset_sequential_sampler_exceed_size(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test read MindDataset with SequentialSampler with offset on starting index and
num_samples > dataset size
Expectation: Output is equal to the expected output
"""
data = get_data(CV_DIR_NAME, True)
columns_list = ["data", "file_name", "label"]
num_readers = 4
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
sampler = ds.SequentialSampler(2, 20)
data_set = ds.MindDataset(file_name + "0", columns_list, num_readers,
sampler=sampler)
dataset_size = data_set.get_dataset_size()
assert dataset_size == 10
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
assert item['file_name'] == np.array(
data[(num_iter + 2) % dataset_size]['file_name'], dtype='S')
num_iter += 1
assert num_iter == 10
def test_cv_minddataset_split_basic(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test basic read MindDataset after Split op is applied
Expectation: Output is equal to the expected output
"""
data = get_data(CV_DIR_NAME, True)
columns_list = ["data", "file_name", "label"]
num_readers = 4
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
d = ds.MindDataset(file_name + "0", columns_list,
num_readers, shuffle=False)
d1, d2 = d.split([8, 2], randomize=False)
assert d.get_dataset_size() == 10
assert d1.get_dataset_size() == 8
assert d2.get_dataset_size() == 2
num_iter = 0
for item in d1.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
assert item['file_name'] == np.array(data[num_iter]['file_name'],
dtype='S')
num_iter += 1
assert num_iter == 8
num_iter = 0
for item in d2.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
assert item['file_name'] == np.array(data[num_iter + 8]['file_name'],
dtype='S')
num_iter += 1
assert num_iter == 2
def test_cv_minddataset_split_exact_percent(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test read MindDataset after Split op is applied using exact percentages
Expectation: Output is equal to the expected output
"""
data = get_data(CV_DIR_NAME, True)
columns_list = ["data", "file_name", "label"]
num_readers = 4
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
d = ds.MindDataset(file_name + "0", columns_list,
num_readers, shuffle=False)
d1, d2 = d.split([0.8, 0.2], randomize=False)
assert d.get_dataset_size() == 10
assert d1.get_dataset_size() == 8
assert d2.get_dataset_size() == 2
num_iter = 0
for item in d1.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
assert item['file_name'] == np.array(
data[num_iter]['file_name'], dtype='S')
num_iter += 1
assert num_iter == 8
num_iter = 0
for item in d2.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
assert item['file_name'] == np.array(data[num_iter + 8]['file_name'],
dtype='S')
num_iter += 1
assert num_iter == 2
def test_cv_minddataset_split_fuzzy_percent(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test read MindDataset after Split op is applied using fuzzy percentages
Expectation: Output is equal to the expected output
"""
data = get_data(CV_DIR_NAME, True)
columns_list = ["data", "file_name", "label"]
num_readers = 4
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
d = ds.MindDataset(file_name + "0", columns_list,
num_readers, shuffle=False)
d1, d2 = d.split([0.41, 0.59], randomize=False)
assert d.get_dataset_size() == 10
assert d1.get_dataset_size() == 4
assert d2.get_dataset_size() == 6
num_iter = 0
for item in d1.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
assert item['file_name'] == np.array(
data[num_iter]['file_name'], dtype='S')
num_iter += 1
assert num_iter == 4
num_iter = 0
for item in d2.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
assert item['file_name'] == np.array(data[num_iter + 4]['file_name'],
dtype='S')
num_iter += 1
assert num_iter == 6
def test_cv_minddataset_split_deterministic(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test read MindDataset after deterministic Split op is applied
Expectation: Output is equal to the expected output
"""
columns_list = ["data", "file_name", "label"]
num_readers = 4
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
d = ds.MindDataset(file_name + "0", columns_list,
num_readers, shuffle=False)
# should set seed to avoid data overlap
ds.config.set_seed(111)
d1, d2 = d.split([0.8, 0.2])
assert d.get_dataset_size() == 10
assert d1.get_dataset_size() == 8
assert d2.get_dataset_size() == 2
d1_dataset = []
d2_dataset = []
num_iter = 0
for item in d1.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
d1_dataset.append(item['file_name'])
num_iter += 1
assert num_iter == 8
num_iter = 0
for item in d2.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
d2_dataset.append(item['file_name'])
num_iter += 1
assert num_iter == 2
inter_dataset = [x for x in d1_dataset if x in d2_dataset]
assert inter_dataset == [] # intersection of d1 and d2
def test_cv_minddataset_split_sharding(add_and_remove_cv_file):
"""
Feature: MindDataset
Description: Test read MindDataset with DistributedSampler after deterministic Split op is applied
Expectation: Output is equal to the expected output
"""
data = get_data(CV_DIR_NAME, True)
columns_list = ["data", "file_name", "label"]
num_readers = 4
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
d = ds.MindDataset(file_name + "0", columns_list,
num_readers, shuffle=False)
# should set seed to avoid data overlap
ds.config.set_seed(111)
d1, d2 = d.split([0.8, 0.2])
assert d.get_dataset_size() == 10
assert d1.get_dataset_size() == 8
assert d2.get_dataset_size() == 2
distributed_sampler = ds.DistributedSampler(2, 0)
d1.use_sampler(distributed_sampler)
assert d1.get_dataset_size() == 4
num_iter = 0
d1_shard1 = []
for item in d1.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
d1_shard1.append(item['file_name'])
assert num_iter == 4
assert d1_shard1 != [x['file_name'] for x in data[0:4]]
distributed_sampler = ds.DistributedSampler(2, 1)
d1.use_sampler(distributed_sampler)
assert d1.get_dataset_size() == 4
d1s = d1.repeat(3)
epoch1_dataset = []
epoch2_dataset = []
epoch3_dataset = []
num_iter = 0
for item in d1s.create_dict_iterator(num_epochs=1, output_numpy=True):
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
if num_iter <= 4:
epoch1_dataset.append(item['file_name'])
elif num_iter <= 8:
epoch2_dataset.append(item['file_name'])
else:
epoch3_dataset.append(item['file_name'])
assert len(epoch1_dataset) == 4
assert len(epoch2_dataset) == 4
assert len(epoch3_dataset) == 4
inter_dataset = [x for x in d1_shard1 if x in epoch1_dataset]
assert inter_dataset == [] # intersection of d1's shard1 and d1's shard2
assert epoch1_dataset not in (epoch2_dataset, epoch3_dataset)
assert epoch2_dataset not in (epoch1_dataset, epoch3_dataset)
assert epoch3_dataset not in (epoch1_dataset, epoch2_dataset)
epoch1_dataset.sort()
epoch2_dataset.sort()
epoch3_dataset.sort()
assert epoch1_dataset != epoch2_dataset
assert epoch2_dataset != epoch3_dataset
assert epoch3_dataset != epoch1_dataset
def get_data(dir_name, sampler=False):
"""
usage: get data from imagenet dataset
params:
dir_name: directory containing folder images and annotation information
"""
if not os.path.isdir(dir_name):
raise IOError("Directory {} not exists".format(dir_name))
img_dir = os.path.join(dir_name, "images")
if sampler:
ann_file = os.path.join(dir_name, "annotation_sampler.txt")
else:
ann_file = os.path.join(dir_name, "annotation.txt")
with open(ann_file, "r") as file_reader:
lines = file_reader.readlines()
data_list = []
for i, line in enumerate(lines):
try:
filename, label = line.split(",")
label = label.strip("\n")
with open(os.path.join(img_dir, filename), "rb") as file_reader:
img = file_reader.read()
data_json = {"id": i,
"file_name": filename,
"data": img,
"label": int(label)}
data_list.append(data_json)
except FileNotFoundError:
continue
return data_list
if __name__ == '__main__':
test_cv_minddataset_pk_sample_no_column(add_and_remove_cv_file)
test_cv_minddataset_pk_sample_basic(add_and_remove_cv_file)
test_cv_minddataset_pk_sample_shuffle(add_and_remove_cv_file)
test_cv_minddataset_pk_sample_out_of_range(add_and_remove_cv_file)
test_cv_minddataset_subset_random_sample_basic(add_and_remove_cv_file)
test_cv_minddataset_subset_random_sample_replica(add_and_remove_cv_file)
test_cv_minddataset_subset_random_sample_empty(add_and_remove_cv_file)
test_cv_minddataset_subset_random_sample_out_of_range(add_and_remove_cv_file)
test_cv_minddataset_subset_random_sample_negative(add_and_remove_cv_file)
test_cv_minddataset_random_sampler_basic(add_and_remove_cv_file)
test_cv_minddataset_random_sampler_repeat(add_and_remove_cv_file)
test_cv_minddataset_random_sampler_replacement(add_and_remove_cv_file)
test_cv_minddataset_sequential_sampler_basic(add_and_remove_cv_file)
test_cv_minddataset_sequential_sampler_exceed_size(add_and_remove_cv_file)
test_cv_minddataset_split_basic(add_and_remove_cv_file)
test_cv_minddataset_split_exact_percent(add_and_remove_cv_file)
test_cv_minddataset_split_fuzzy_percent(add_and_remove_cv_file)
test_cv_minddataset_split_deterministic(add_and_remove_cv_file)
test_cv_minddataset_split_sharding(add_and_remove_cv_file)