mindspore/tests/ut/python/dataset/test_griffinlim.py

246 lines
13 KiB
Python

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing GriffinLim op in DE
"""
import numpy as np
import pytest
import mindspore.dataset as ds
import mindspore.dataset.audio as c_audio
from mindspore import log as logger
DATA_DIR = "../data/dataset/audiorecord/"
def count_unequal_element(data_expected, data_me, rtol, atol):
assert data_expected.shape == data_me.shape
total_count = len(data_expected.flatten())
error = np.abs(data_expected - data_me)
greater = np.greater(error, atol + np.abs(data_expected) * rtol)
loss_count = np.count_nonzero(greater)
assert (loss_count / total_count) < rtol, \
"\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}". \
format(data_expected[greater], data_me[greater], error[greater])
def allclose_nparray(data_expected, data_me, rtol, atol, equal_nan=True):
if np.any(np.isnan(data_expected)):
assert np.allclose(data_me, data_expected, rtol, atol, equal_nan=equal_nan)
elif not np.allclose(data_me, data_expected, rtol, atol, equal_nan=equal_nan):
count_unequal_element(data_expected, data_me, rtol, atol)
def test_griffin_lim_pipeline():
"""
Feature: GriffinLim
Description: Test GriffinLim cpp op in pipeline
Expectation: Equal results from Mindspore and benchmark
"""
# <101, 6>
in_data = np.load(DATA_DIR + "griffinlim_101x6.npy")[np.newaxis, :]
out_expect = np.load(DATA_DIR + "griffinlim_101x6_out.npy")
dataset = ds.NumpySlicesDataset(in_data, column_names=["multi_dimensional_data"], shuffle=False)
transforms = [c_audio.GriffinLim(n_fft=200, rand_init=False)]
dataset = dataset.map(operations=transforms, input_columns=["multi_dimensional_data"])
for item in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
out_put = item["multi_dimensional_data"]
allclose_nparray(out_put, out_expect, 0.001, 0.001)
# <151, 8>
in_data = np.load(DATA_DIR + "griffinlim_151x8.npy")[np.newaxis, :]
out_expect = np.load(DATA_DIR + "griffinlim_151x8_out.npy")
dataset = ds.NumpySlicesDataset(in_data, column_names=["multi_dimensional_data"], shuffle=False)
transforms = [c_audio.GriffinLim(n_fft=300, n_iter=20, win_length=240, hop_length=120, rand_init=False, power=1.2)]
dataset = dataset.map(operations=transforms, input_columns=["multi_dimensional_data"])
for item in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
out_put = item["multi_dimensional_data"]
allclose_nparray(out_put, out_expect, 0.001, 0.001)
# <2, 301, 4> hop_length greater than half of win_length
in_data = np.load(DATA_DIR + "griffinlim_2x301x4.npy")[np.newaxis, :]
out_expect = np.load(DATA_DIR + "griffinlim_2x301x4_out.npy")
dataset = ds.NumpySlicesDataset(in_data, column_names=["multi_dimensional_data"], shuffle=False)
transforms = [c_audio.GriffinLim(n_fft=600, n_iter=10, win_length=240, hop_length=130, rand_init=False)]
dataset = dataset.map(operations=transforms, input_columns=["multi_dimensional_data"])
for item in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
out_put = item["multi_dimensional_data"]
allclose_nparray(out_put, out_expect, 0.001, 0.001)
def test_griffin_lim_pipeline_invalid_param_range():
"""
Feature: GriffinLim
Description: Test GriffinLim with invalid input parameters
Expectation: Throw correct error and message
"""
logger.info("test GriffinLim op with default values")
in_data = np.load(DATA_DIR + "griffinlim_151x8.npy")[np.newaxis, :]
data1 = ds.NumpySlicesDataset(in_data, column_names=["multi_dimensional_data"], shuffle=False)
with pytest.raises(ValueError, match=r"Input n_fft is not within the required interval of \[1, 2147483647\]."):
transforms = [c_audio.GriffinLim(n_fft=-10)]
data1 = data1.map(operations=transforms, input_columns=["multi_dimensional_data"])
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
_ = item["multi_dimensional_data"]
with pytest.raises(ValueError, match=r"Input n_iter is not within the required interval of \[1, 2147483647\]."):
transforms = [c_audio.GriffinLim(n_fft=300, n_iter=-10)]
data1 = data1.map(operations=transforms, input_columns=["multi_dimensional_data"])
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
_ = item["multi_dimensional_data"]
with pytest.raises(ValueError, match=r"Input win_length is not within the required interval of \[0, 2147483647\]."):
transforms = [c_audio.GriffinLim(n_fft=300, n_iter=10, win_length=-10)]
data1 = data1.map(operations=transforms, input_columns=["multi_dimensional_data"])
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
_ = item["multi_dimensional_data"]
with pytest.raises(ValueError,
match=r"Input win_length should be no more than n_fft, but got win_length: 400 " +
r"and n_fft: 300."):
transforms = [c_audio.GriffinLim(n_fft=300, n_iter=10, win_length=400)]
data1 = data1.map(operations=transforms, input_columns=["multi_dimensional_data"])
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
_ = item["multi_dimensional_data"]
with pytest.raises(ValueError, match=r"Input hop_length is not within the required interval of \[0, 2147483647\]."):
transforms = [c_audio.GriffinLim(n_fft=300, n_iter=10, win_length=0, hop_length=-10)]
data1 = data1.map(operations=transforms, input_columns=["multi_dimensional_data"])
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
_ = item["multi_dimensional_data"]
with pytest.raises(ValueError, match=r"Input power is not within the required interval of \(0, 16777216\]."):
transforms = [c_audio.GriffinLim(n_fft=300, n_iter=10, win_length=0, hop_length=0, power=-3)]
data1 = data1.map(operations=transforms, input_columns=["multi_dimensional_data"])
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
_ = item["multi_dimensional_data"]
with pytest.raises(ValueError, match=r"Input momentum is not within the required interval of \[0, 16777216\]."):
transforms = [c_audio.GriffinLim(n_fft=300, n_iter=10, win_length=0, hop_length=0, power=2, momentum=-10)]
data1 = data1.map(operations=transforms, input_columns=["multi_dimensional_data"])
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
_ = item["multi_dimensional_data"]
with pytest.raises(ValueError, match=r"Input length is not within the required interval of \[0, 2147483647\]."):
transforms = [
c_audio.GriffinLim(n_fft=300, n_iter=10, win_length=0, hop_length=0, power=2, momentum=0.9, length=-2)
]
data1 = data1.map(operations=transforms, input_columns=["multi_dimensional_data"])
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
_ = item["multi_dimensional_data"]
def test_griffin_lim_pipeline_invalid_param_constraint():
"""
Feature: GriffinLim
Description: Test GriffinLim with invalid input parameters
Expectation: Throw RuntimeError
"""
logger.info("test GriffinLim op with default values")
in_data = np.load(DATA_DIR + "griffinlim_151x8.npy")[np.newaxis, :]
data1 = ds.NumpySlicesDataset(in_data, column_names=["multi_dimensional_data"], shuffle=False)
with pytest.raises(RuntimeError,
match=r"Unexpected error. map operation: \[GriffinLim\] failed. " +
r"GriffinLim: the frequency of the input should equal to n_fft / 2 \+ 1"):
transforms = [c_audio.GriffinLim(n_fft=100)]
data1 = data1.map(operations=transforms, input_columns=["multi_dimensional_data"])
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
_ = item["multi_dimensional_data"]
with pytest.raises(RuntimeError,
match=r"Unexpected error. map operation: \[GriffinLim\] failed. " +
r"GriffinLim: the frequency of the input should equal to n_fft / 2 \+ 1"):
transforms = [c_audio.GriffinLim(n_fft=300, n_iter=10, win_length=0, hop_length=120)]
data1 = data1.map(operations=transforms, input_columns=["multi_dimensional_data"])
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
_ = item["multi_dimensional_data"]
with pytest.raises(RuntimeError,
match=r"Syntax error. GriffinLim: momentum equal to or greater than 1 can be unstable, " +
"but got: 1.000000"):
transforms = [c_audio.GriffinLim(n_fft=300, n_iter=10, win_length=0, hop_length=0, power=2, momentum=1)]
data1 = data1.map(operations=transforms, input_columns=["multi_dimensional_data"])
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
_ = item["multi_dimensional_data"]
def test_griffin_lim_pipeline_invalid_param_type():
"""
Feature: GriffinLim
Description: Test GriffinLim with invalid input parameters
Expectation: Throw correct error and message
"""
logger.info("test GriffinLim op with default values")
in_data = np.load(DATA_DIR + "griffinlim_151x8.npy")[np.newaxis, :]
data1 = ds.NumpySlicesDataset(in_data, column_names=["multi_dimensional_data"], shuffle=False)
with pytest.raises(TypeError,
match=r"Argument window_type with value type is not of type " +
r"\[<enum \'WindowType\'>\], but got <class \'str\'>."):
transforms = [c_audio.GriffinLim(n_fft=300, n_iter=10, win_length=0, hop_length=0, window_type="type")]
data1 = data1.map(operations=transforms, input_columns=["multi_dimensional_data"])
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
_ = item["multi_dimensional_data"]
with pytest.raises(TypeError,
match=r"Argument rand_init with value true is not of type \[<class \'bool\'>\], " +
r"but got <class \'str\'>."):
transforms = [
c_audio.GriffinLim(n_fft=300,
n_iter=10,
win_length=0,
hop_length=0,
power=2,
momentum=0.9,
length=0,
rand_init='true')
]
data1 = data1.map(operations=transforms, input_columns=["multi_dimensional_data"])
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
_ = item["multi_dimensional_data"]
def test_griffin_lim_eager():
"""
Feature: GriffinLim
Description: Test GriffinLim cpp op with eager mode
Expectation: Equal results from Mindspore and benchmark
"""
# <freq, time>
spectrogram = np.load(DATA_DIR + "griffinlim_101x6.npy").astype(np.float64)
out_expect = np.load(DATA_DIR + "griffinlim_101x6_out.npy").astype(np.float64)
out_ms = c_audio.GriffinLim(n_fft=200, rand_init=False)(spectrogram)
allclose_nparray(out_ms, out_expect, 0.001, 0.001)
# <1, freq, time>
spectrogram = np.load(DATA_DIR + "griffinlim_1x201x6.npy").astype(np.float64)
out_expect = np.load(DATA_DIR + "griffinlim_1x201x6_out.npy").astype(np.float64)
out_ms = c_audio.GriffinLim(rand_init=False)(spectrogram)
allclose_nparray(out_ms, out_expect, 0.001, 0.001)
# <2, freq, time>
spectrogram = np.load(DATA_DIR + "griffinlim_2x301x6.npy").astype(np.float64)
out_expect = np.load(DATA_DIR + "griffinlim_2x301x6_out.npy").astype(np.float64)
out_ms = c_audio.GriffinLim(n_fft=600, rand_init=False)(spectrogram)
allclose_nparray(out_ms, out_expect, 0.001, 0.001)
if __name__ == "__main__":
test_griffin_lim_pipeline()
test_griffin_lim_pipeline_invalid_param_range()
test_griffin_lim_pipeline_invalid_param_constraint()
test_griffin_lim_pipeline_invalid_param_type()
test_griffin_lim_eager()