mindspore/tests/ut/python/dataset/test_gaussian_blur.py

114 lines
4.1 KiB
Python

# Copyright 2021-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing GaussianBlur Python API
"""
import cv2
import mindspore.dataset as ds
import mindspore.dataset.vision as vision
from mindspore import log as logger
from util import visualize_image, diff_mse
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
IMAGE_FILE = "../data/dataset/apple.jpg"
def test_gaussian_blur_pipeline(plot=False):
"""
Feature: GaussianBlur
Description: Test GaussianBlur of Cpp implementation
Expectation: Output is the same as expected output
"""
logger.info("test_gaussian_blur_pipeline")
# First dataset
dataset1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
decode_op = vision.Decode()
gaussian_blur_op = vision.GaussianBlur(3, 3)
dataset1 = dataset1.map(operations=decode_op, input_columns=["image"])
dataset1 = dataset1.map(operations=gaussian_blur_op, input_columns=["image"])
# Second dataset
dataset2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
dataset2 = dataset2.map(operations=decode_op, input_columns=["image"])
num_iter = 0
for data1, data2 in zip(dataset1.create_dict_iterator(num_epochs=1, output_numpy=True),
dataset2.create_dict_iterator(num_epochs=1, output_numpy=True)):
if num_iter > 0:
break
gaussian_blur_ms = data1["image"]
original = data2["image"]
gaussian_blur_cv = cv2.GaussianBlur(original, (3, 3), 3)
mse = diff_mse(gaussian_blur_ms, gaussian_blur_cv)
logger.info("gaussian_blur_{}, mse: {}".format(num_iter + 1, mse))
assert mse == 0
num_iter += 1
if plot:
visualize_image(original, gaussian_blur_ms, mse, gaussian_blur_cv)
def test_gaussian_blur_eager():
"""
Feature: GaussianBlur
Description: Test GaussianBlur in eager mode
Expectation: Output is the same as expected output
"""
logger.info("test_gaussian_blur_eager")
img = cv2.imread(IMAGE_FILE)
img_ms = vision.GaussianBlur((3, 5), (3.5, 3.5))(img)
img_cv = cv2.GaussianBlur(img, (3, 5), 3.5, 3.5)
mse = diff_mse(img_ms, img_cv)
assert mse == 0
def test_gaussian_blur_exception():
"""
Feature: GaussianBlur
Description: Test GaussianBlur with invalid parameters
Expectation: Error is raised as expected
"""
logger.info("test_gaussian_blur_exception")
try:
_ = vision.GaussianBlur([2, 2])
except ValueError as e:
logger.info("Got an exception in GaussianBlur: {}".format(str(e)))
assert "not an odd value" in str(e)
try:
_ = vision.GaussianBlur(3.0, [3, 3])
except TypeError as e:
logger.info("Got an exception in GaussianBlur: {}".format(str(e)))
assert "not of type [<class 'int'>, <class 'list'>, <class 'tuple'>]" in str(e)
try:
_ = vision.GaussianBlur(3, -3)
except ValueError as e:
logger.info("Got an exception in GaussianBlur: {}".format(str(e)))
assert "not within the required interval" in str(e)
try:
_ = vision.GaussianBlur(3, [3, 3, 3])
except TypeError as e:
logger.info("Got an exception in GaussianBlur: {}".format(str(e)))
assert "should be a single number or a list/tuple of length 2" in str(e)
if __name__ == "__main__":
test_gaussian_blur_pipeline(plot=False)
test_gaussian_blur_eager()
test_gaussian_blur_exception()