315 lines
12 KiB
Python
315 lines
12 KiB
Python
# Copyright 2020-2022 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""
|
|
Testing Equalize op in DE
|
|
"""
|
|
import numpy as np
|
|
|
|
import mindspore.dataset as ds
|
|
import mindspore.dataset.transforms
|
|
import mindspore.dataset.vision as vision
|
|
from mindspore import log as logger
|
|
from util import visualize_list, visualize_one_channel_dataset, diff_mse, save_and_check_md5, save_and_check_md5_pil
|
|
|
|
DATA_DIR = "../data/dataset/testImageNetData/train/"
|
|
MNIST_DATA_DIR = "../data/dataset/testMnistData"
|
|
|
|
GENERATE_GOLDEN = False
|
|
|
|
|
|
def test_equalize_callable():
|
|
"""
|
|
Feature: Equalize Op
|
|
Description: Test op in eager mode
|
|
Expectation: Output image shape from op is verified
|
|
"""
|
|
logger.info("Test Equalize is callable")
|
|
img = np.fromfile("../data/dataset/apple.jpg", dtype=np.uint8)
|
|
logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
|
|
|
|
img = vision.Decode()(img)
|
|
img = vision.Equalize()(img)
|
|
logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
|
|
|
|
assert img.shape == (2268, 4032, 3)
|
|
|
|
|
|
def test_equalize_py(plot=False):
|
|
"""
|
|
Feature: Equalize Op
|
|
Description: Test Python implementation
|
|
Expectation: Dataset pipeline runs successfully and results are visually verified
|
|
"""
|
|
logger.info("Test Equalize")
|
|
|
|
# Original Images
|
|
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
|
|
|
|
transforms_original = mindspore.dataset.transforms.Compose([vision.Decode(True),
|
|
vision.Resize((224, 224)),
|
|
vision.ToTensor()])
|
|
|
|
ds_original = data_set.map(operations=transforms_original, input_columns="image")
|
|
|
|
ds_original = ds_original.batch(512)
|
|
|
|
for idx, (image, _) in enumerate(ds_original):
|
|
if idx == 0:
|
|
images_original = np.transpose(image.asnumpy(), (0, 2, 3, 1))
|
|
else:
|
|
images_original = np.append(images_original,
|
|
np.transpose(image.asnumpy(), (0, 2, 3, 1)),
|
|
axis=0)
|
|
|
|
# Color Equalized Images
|
|
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
|
|
|
|
transforms_equalize = mindspore.dataset.transforms.Compose([vision.Decode(True),
|
|
vision.Resize((224, 224)),
|
|
vision.Equalize(),
|
|
vision.ToTensor()])
|
|
|
|
ds_equalize = data_set.map(operations=transforms_equalize, input_columns="image")
|
|
|
|
ds_equalize = ds_equalize.batch(512)
|
|
|
|
for idx, (image, _) in enumerate(ds_equalize):
|
|
if idx == 0:
|
|
images_equalize = np.transpose(image.asnumpy(), (0, 2, 3, 1))
|
|
else:
|
|
images_equalize = np.append(images_equalize,
|
|
np.transpose(image.asnumpy(), (0, 2, 3, 1)),
|
|
axis=0)
|
|
|
|
num_samples = images_original.shape[0]
|
|
mse = np.zeros(num_samples)
|
|
for i in range(num_samples):
|
|
mse[i] = diff_mse(images_equalize[i], images_original[i])
|
|
logger.info("MSE= {}".format(str(np.mean(mse))))
|
|
|
|
if plot:
|
|
visualize_list(images_original, images_equalize)
|
|
|
|
|
|
def test_equalize_c(plot=False):
|
|
"""
|
|
Feature: Equalize Op
|
|
Description: Test C++ implementation
|
|
Expectation: Dataset pipeline runs successfully and results are verified
|
|
"""
|
|
logger.info("Test Equalize C++ implementation")
|
|
|
|
# Original Images
|
|
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
|
|
|
|
transforms_original = [vision.Decode(), vision.Resize(size=[224, 224])]
|
|
|
|
ds_original = data_set.map(operations=transforms_original, input_columns="image")
|
|
|
|
ds_original = ds_original.batch(512)
|
|
|
|
for idx, (image, _) in enumerate(ds_original):
|
|
if idx == 0:
|
|
images_original = image.asnumpy()
|
|
else:
|
|
images_original = np.append(images_original,
|
|
image.asnumpy(),
|
|
axis=0)
|
|
|
|
# Equalize Images
|
|
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
|
|
|
|
transform_equalize = [vision.Decode(), vision.Resize(size=[224, 224]),
|
|
vision.Equalize()]
|
|
|
|
ds_equalize = data_set.map(operations=transform_equalize, input_columns="image")
|
|
|
|
ds_equalize = ds_equalize.batch(512)
|
|
|
|
for idx, (image, _) in enumerate(ds_equalize):
|
|
if idx == 0:
|
|
images_equalize = image.asnumpy()
|
|
else:
|
|
images_equalize = np.append(images_equalize,
|
|
image.asnumpy(),
|
|
axis=0)
|
|
if plot:
|
|
visualize_list(images_original, images_equalize)
|
|
|
|
num_samples = images_original.shape[0]
|
|
mse = np.zeros(num_samples)
|
|
for i in range(num_samples):
|
|
mse[i] = diff_mse(images_equalize[i], images_original[i])
|
|
logger.info("MSE= {}".format(str(np.mean(mse))))
|
|
|
|
|
|
def test_equalize_py_c(plot=False):
|
|
"""
|
|
Feature: Equalize Op
|
|
Description: Test C++ implementation and Python implementation
|
|
Expectation: Dataset pipeline runs successfully and results are verified
|
|
"""
|
|
logger.info("Test Equalize C++ and Python implementation")
|
|
|
|
# equalize Images in cpp
|
|
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
|
|
data_set = data_set.map(operations=[vision.Decode(), vision.Resize((224, 224))], input_columns=["image"])
|
|
|
|
ds_c_equalize = data_set.map(operations=vision.Equalize(), input_columns="image")
|
|
|
|
ds_c_equalize = ds_c_equalize.batch(512)
|
|
|
|
for idx, (image, _) in enumerate(ds_c_equalize):
|
|
if idx == 0:
|
|
images_c_equalize = image.asnumpy()
|
|
else:
|
|
images_c_equalize = np.append(images_c_equalize,
|
|
image.asnumpy(),
|
|
axis=0)
|
|
|
|
# Equalize images in Python
|
|
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
|
|
data_set = data_set.map(operations=[vision.Decode(), vision.Resize((224, 224))], input_columns=["image"])
|
|
|
|
transforms_p_equalize = mindspore.dataset.transforms.Compose([lambda img: img.astype(np.uint8),
|
|
vision.ToPIL(),
|
|
vision.Equalize(),
|
|
np.array])
|
|
|
|
ds_p_equalize = data_set.map(operations=transforms_p_equalize, input_columns="image")
|
|
|
|
ds_p_equalize = ds_p_equalize.batch(512)
|
|
|
|
for idx, (image, _) in enumerate(ds_p_equalize):
|
|
if idx == 0:
|
|
images_p_equalize = image.asnumpy()
|
|
else:
|
|
images_p_equalize = np.append(images_p_equalize,
|
|
image.asnumpy(),
|
|
axis=0)
|
|
|
|
num_samples = images_c_equalize.shape[0]
|
|
mse = np.zeros(num_samples)
|
|
for i in range(num_samples):
|
|
mse[i] = diff_mse(images_p_equalize[i], images_c_equalize[i])
|
|
logger.info("MSE= {}".format(str(np.mean(mse))))
|
|
|
|
if plot:
|
|
visualize_list(images_c_equalize, images_p_equalize, visualize_mode=2)
|
|
|
|
|
|
def test_equalize_one_channel():
|
|
"""
|
|
Feature: Equalize Op
|
|
Description: Test Equalize C++ implementation with one channel images
|
|
Expectation: Invalid input is detected
|
|
"""
|
|
logger.info("Test Equalize C++ implementation with One Channel Images")
|
|
|
|
c_op = vision.Equalize()
|
|
|
|
try:
|
|
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
|
|
data_set = data_set.map(operations=[vision.Decode(), vision.Resize((224, 224)),
|
|
lambda img: np.array(img[:, :, 0])], input_columns=["image"])
|
|
|
|
data_set.map(operations=c_op, input_columns="image")
|
|
|
|
except RuntimeError as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
assert "The shape" in str(e)
|
|
|
|
|
|
def test_equalize_mnist_c(plot=False):
|
|
"""
|
|
Feature: Equalize Op
|
|
Description: Test Equalize C++ implementation with MNIST dataset (Grayscale images)
|
|
Expectation: Dataset pipeline runs successfully and md5 results are verified
|
|
"""
|
|
logger.info("Test Equalize C++ implementation with MNIST Images")
|
|
data_set = ds.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
|
|
ds_equalize_c = data_set.map(operations=vision.Equalize(), input_columns="image")
|
|
ds_orig = ds.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
|
|
|
|
images = []
|
|
images_trans = []
|
|
labels = []
|
|
for _, (data_orig, data_trans) in enumerate(zip(ds_orig, ds_equalize_c)):
|
|
image_orig, label_orig = data_orig
|
|
image_trans, _ = data_trans
|
|
images.append(image_orig.asnumpy())
|
|
labels.append(label_orig.asnumpy())
|
|
images_trans.append(image_trans.asnumpy())
|
|
|
|
# Compare with expected md5 from images
|
|
filename = "equalize_mnist_result_c.npz"
|
|
save_and_check_md5(ds_equalize_c, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
if plot:
|
|
visualize_one_channel_dataset(images, images_trans, labels)
|
|
|
|
|
|
def test_equalize_md5_py():
|
|
"""
|
|
Feature: Equalize Op
|
|
Description: Test Python implementation with md5 check
|
|
Expectation: Dataset pipeline runs successfully and md5 results are verified
|
|
"""
|
|
logger.info("Test Equalize")
|
|
|
|
# First dataset
|
|
data1 = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
|
|
transforms = mindspore.dataset.transforms.Compose([vision.Decode(True),
|
|
vision.Equalize(),
|
|
vision.ToTensor()])
|
|
|
|
data1 = data1.map(operations=transforms, input_columns="image")
|
|
# Compare with expected md5 from images
|
|
filename = "equalize_01_result_py_unified.npz"
|
|
save_and_check_md5_pil(data1, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
|
|
def test_equalize_md5_c():
|
|
"""
|
|
Feature: Equalize Op
|
|
Description: Test C++ implementation with md5 check
|
|
Expectation: Dataset pipeline runs successfully and md5 results are verified
|
|
"""
|
|
logger.info("Test Equalize C++ implementation with md5 check")
|
|
|
|
# Generate dataset
|
|
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
|
|
|
|
transforms_equalize = [vision.Decode(),
|
|
vision.Resize(size=[224, 224]),
|
|
vision.Equalize(),
|
|
vision.ToTensor()]
|
|
|
|
data = data_set.map(operations=transforms_equalize, input_columns="image")
|
|
# Compare with expected md5 from images
|
|
filename = "equalize_01_result_c_unified.npz"
|
|
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_equalize_callable()
|
|
test_equalize_py(plot=False)
|
|
test_equalize_c(plot=False)
|
|
test_equalize_py_c(plot=False)
|
|
test_equalize_mnist_c(plot=True)
|
|
test_equalize_one_channel()
|
|
test_equalize_md5_py()
|
|
test_equalize_md5_c()
|