mindspore/tests/ut/python/dataset/test_equalize.py

315 lines
12 KiB
Python

# Copyright 2020-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing Equalize op in DE
"""
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.transforms
import mindspore.dataset.vision as vision
from mindspore import log as logger
from util import visualize_list, visualize_one_channel_dataset, diff_mse, save_and_check_md5, save_and_check_md5_pil
DATA_DIR = "../data/dataset/testImageNetData/train/"
MNIST_DATA_DIR = "../data/dataset/testMnistData"
GENERATE_GOLDEN = False
def test_equalize_callable():
"""
Feature: Equalize Op
Description: Test op in eager mode
Expectation: Output image shape from op is verified
"""
logger.info("Test Equalize is callable")
img = np.fromfile("../data/dataset/apple.jpg", dtype=np.uint8)
logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
img = vision.Decode()(img)
img = vision.Equalize()(img)
logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
assert img.shape == (2268, 4032, 3)
def test_equalize_py(plot=False):
"""
Feature: Equalize Op
Description: Test Python implementation
Expectation: Dataset pipeline runs successfully and results are visually verified
"""
logger.info("Test Equalize")
# Original Images
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms_original = mindspore.dataset.transforms.Compose([vision.Decode(True),
vision.Resize((224, 224)),
vision.ToTensor()])
ds_original = data_set.map(operations=transforms_original, input_columns="image")
ds_original = ds_original.batch(512)
for idx, (image, _) in enumerate(ds_original):
if idx == 0:
images_original = np.transpose(image.asnumpy(), (0, 2, 3, 1))
else:
images_original = np.append(images_original,
np.transpose(image.asnumpy(), (0, 2, 3, 1)),
axis=0)
# Color Equalized Images
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms_equalize = mindspore.dataset.transforms.Compose([vision.Decode(True),
vision.Resize((224, 224)),
vision.Equalize(),
vision.ToTensor()])
ds_equalize = data_set.map(operations=transforms_equalize, input_columns="image")
ds_equalize = ds_equalize.batch(512)
for idx, (image, _) in enumerate(ds_equalize):
if idx == 0:
images_equalize = np.transpose(image.asnumpy(), (0, 2, 3, 1))
else:
images_equalize = np.append(images_equalize,
np.transpose(image.asnumpy(), (0, 2, 3, 1)),
axis=0)
num_samples = images_original.shape[0]
mse = np.zeros(num_samples)
for i in range(num_samples):
mse[i] = diff_mse(images_equalize[i], images_original[i])
logger.info("MSE= {}".format(str(np.mean(mse))))
if plot:
visualize_list(images_original, images_equalize)
def test_equalize_c(plot=False):
"""
Feature: Equalize Op
Description: Test C++ implementation
Expectation: Dataset pipeline runs successfully and results are verified
"""
logger.info("Test Equalize C++ implementation")
# Original Images
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms_original = [vision.Decode(), vision.Resize(size=[224, 224])]
ds_original = data_set.map(operations=transforms_original, input_columns="image")
ds_original = ds_original.batch(512)
for idx, (image, _) in enumerate(ds_original):
if idx == 0:
images_original = image.asnumpy()
else:
images_original = np.append(images_original,
image.asnumpy(),
axis=0)
# Equalize Images
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transform_equalize = [vision.Decode(), vision.Resize(size=[224, 224]),
vision.Equalize()]
ds_equalize = data_set.map(operations=transform_equalize, input_columns="image")
ds_equalize = ds_equalize.batch(512)
for idx, (image, _) in enumerate(ds_equalize):
if idx == 0:
images_equalize = image.asnumpy()
else:
images_equalize = np.append(images_equalize,
image.asnumpy(),
axis=0)
if plot:
visualize_list(images_original, images_equalize)
num_samples = images_original.shape[0]
mse = np.zeros(num_samples)
for i in range(num_samples):
mse[i] = diff_mse(images_equalize[i], images_original[i])
logger.info("MSE= {}".format(str(np.mean(mse))))
def test_equalize_py_c(plot=False):
"""
Feature: Equalize Op
Description: Test C++ implementation and Python implementation
Expectation: Dataset pipeline runs successfully and results are verified
"""
logger.info("Test Equalize C++ and Python implementation")
# equalize Images in cpp
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = data_set.map(operations=[vision.Decode(), vision.Resize((224, 224))], input_columns=["image"])
ds_c_equalize = data_set.map(operations=vision.Equalize(), input_columns="image")
ds_c_equalize = ds_c_equalize.batch(512)
for idx, (image, _) in enumerate(ds_c_equalize):
if idx == 0:
images_c_equalize = image.asnumpy()
else:
images_c_equalize = np.append(images_c_equalize,
image.asnumpy(),
axis=0)
# Equalize images in Python
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = data_set.map(operations=[vision.Decode(), vision.Resize((224, 224))], input_columns=["image"])
transforms_p_equalize = mindspore.dataset.transforms.Compose([lambda img: img.astype(np.uint8),
vision.ToPIL(),
vision.Equalize(),
np.array])
ds_p_equalize = data_set.map(operations=transforms_p_equalize, input_columns="image")
ds_p_equalize = ds_p_equalize.batch(512)
for idx, (image, _) in enumerate(ds_p_equalize):
if idx == 0:
images_p_equalize = image.asnumpy()
else:
images_p_equalize = np.append(images_p_equalize,
image.asnumpy(),
axis=0)
num_samples = images_c_equalize.shape[0]
mse = np.zeros(num_samples)
for i in range(num_samples):
mse[i] = diff_mse(images_p_equalize[i], images_c_equalize[i])
logger.info("MSE= {}".format(str(np.mean(mse))))
if plot:
visualize_list(images_c_equalize, images_p_equalize, visualize_mode=2)
def test_equalize_one_channel():
"""
Feature: Equalize Op
Description: Test Equalize C++ implementation with one channel images
Expectation: Invalid input is detected
"""
logger.info("Test Equalize C++ implementation with One Channel Images")
c_op = vision.Equalize()
try:
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = data_set.map(operations=[vision.Decode(), vision.Resize((224, 224)),
lambda img: np.array(img[:, :, 0])], input_columns=["image"])
data_set.map(operations=c_op, input_columns="image")
except RuntimeError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "The shape" in str(e)
def test_equalize_mnist_c(plot=False):
"""
Feature: Equalize Op
Description: Test Equalize C++ implementation with MNIST dataset (Grayscale images)
Expectation: Dataset pipeline runs successfully and md5 results are verified
"""
logger.info("Test Equalize C++ implementation with MNIST Images")
data_set = ds.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
ds_equalize_c = data_set.map(operations=vision.Equalize(), input_columns="image")
ds_orig = ds.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
images = []
images_trans = []
labels = []
for _, (data_orig, data_trans) in enumerate(zip(ds_orig, ds_equalize_c)):
image_orig, label_orig = data_orig
image_trans, _ = data_trans
images.append(image_orig.asnumpy())
labels.append(label_orig.asnumpy())
images_trans.append(image_trans.asnumpy())
# Compare with expected md5 from images
filename = "equalize_mnist_result_c.npz"
save_and_check_md5(ds_equalize_c, filename, generate_golden=GENERATE_GOLDEN)
if plot:
visualize_one_channel_dataset(images, images_trans, labels)
def test_equalize_md5_py():
"""
Feature: Equalize Op
Description: Test Python implementation with md5 check
Expectation: Dataset pipeline runs successfully and md5 results are verified
"""
logger.info("Test Equalize")
# First dataset
data1 = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms = mindspore.dataset.transforms.Compose([vision.Decode(True),
vision.Equalize(),
vision.ToTensor()])
data1 = data1.map(operations=transforms, input_columns="image")
# Compare with expected md5 from images
filename = "equalize_01_result_py_unified.npz"
save_and_check_md5_pil(data1, filename, generate_golden=GENERATE_GOLDEN)
def test_equalize_md5_c():
"""
Feature: Equalize Op
Description: Test C++ implementation with md5 check
Expectation: Dataset pipeline runs successfully and md5 results are verified
"""
logger.info("Test Equalize C++ implementation with md5 check")
# Generate dataset
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms_equalize = [vision.Decode(),
vision.Resize(size=[224, 224]),
vision.Equalize(),
vision.ToTensor()]
data = data_set.map(operations=transforms_equalize, input_columns="image")
# Compare with expected md5 from images
filename = "equalize_01_result_c_unified.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
if __name__ == "__main__":
test_equalize_callable()
test_equalize_py(plot=False)
test_equalize_c(plot=False)
test_equalize_py_c(plot=False)
test_equalize_mnist_c(plot=True)
test_equalize_one_channel()
test_equalize_md5_py()
test_equalize_md5_c()