mindspore/tests/ut/python/dataset/test_decode.py

144 lines
4.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright 2019-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing Decode op in DE
"""
import cv2
import numpy as np
import pytest
import mindspore.dataset as ds
import mindspore.dataset.vision as vision
from mindspore import log as logger
from util import diff_mse
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def test_decode_op():
"""
Feature: Decode Op
Description: Test C++ implementation
Expectation: Dataset pipeline runs successfully and results are verified
"""
logger.info("test_decode_op")
# Serialize and Load dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
# Decode with rgb format set to True
data1 = data1.map(operations=[vision.Decode()], input_columns=["image"])
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
actual = item1["image"]
expected = cv2.imdecode(item2["image"], cv2.IMREAD_COLOR)
expected = cv2.cvtColor(expected, cv2.COLOR_BGR2RGB)
assert actual.shape == expected.shape
mse = diff_mse(actual, expected)
assert mse == 0
def test_decode_op_support_format():
"""
Feature: Decode Op
Description: Test support format of decode op
Expectation: decode image successfully
"""
c_decode = vision.Decode(to_pil=False)
p_decode = vision.Decode(to_pil=True)
# jpeg: Opencv[√] Pillow[√]
jpg_image = np.fromfile("../data/dataset/testFormats/apple.jpg", np.uint8)
c_decode(jpg_image)
p_decode(jpg_image)
# bmp: Opencv[√] Pillow[√]
bmp_image = np.fromfile("../data/dataset/testFormats/apple.bmp", np.uint8)
c_decode(bmp_image)
p_decode(bmp_image)
# png: Opencv[√] Pillow[√]
png_image = np.fromfile("../data/dataset/testFormats/apple.png", np.uint8)
c_decode(png_image)
p_decode(png_image)
# tiff: Opencv[√] Pillow[√]
tiff_image = np.fromfile("../data/dataset/testFormats/apple.tiff", np.uint8)
c_decode(tiff_image)
p_decode(tiff_image)
# gif: Opencv[×] Pillow[√]
gif_image = np.fromfile("../data/dataset/testFormats/apple.gif", np.uint8)
with pytest.raises(RuntimeError):
c_decode(gif_image)
p_decode(gif_image)
# webp: Opencv[×] Pillow[√]
webp_image = np.fromfile("../data/dataset/testFormats/apple.webp", np.uint8)
with pytest.raises(RuntimeError):
c_decode(webp_image)
p_decode(webp_image)
class ImageDataset:
"""Custom class to generate and read image dataset"""
def __init__(self, data_path, data_type="numpy"):
self.data = [data_path]
self.label = np.random.sample((1, 1))
self.data_type = data_type
def __getitem__(self, index):
# use file open and read method
f = open(self.data[index], 'rb')
img_bytes = f.read()
f.close()
if self.data_type == "numpy":
img_bytes = np.frombuffer(img_bytes, dtype=np.uint8)
# Return bytes directly
return (img_bytes, self.label[index])
def __len__(self):
return len(self.data)
def test_read_image_decode_op():
"""
Feature: Decode Op
Description: Test Python implementation
Expectation: Dataset pipeline runs successfully and results are verified
"""
data_path = "../data/dataset/testPK/data/class1/0.jpg"
dataset1 = ds.GeneratorDataset(ImageDataset(data_path, data_type="numpy"), ["data", "label"])
dataset2 = ds.GeneratorDataset(ImageDataset(data_path, data_type="bytes"), ["data", "label"])
decode_op = vision.Decode(to_pil=True)
to_tensor = vision.ToTensor(output_type=np.int32)
dataset1 = dataset1.map(operations=[decode_op, to_tensor], input_columns=["data"])
dataset2 = dataset2.map(operations=[decode_op, to_tensor], input_columns=["data"])
for item1, item2 in zip(dataset1, dataset2):
assert np.count_nonzero(item1[0].asnumpy() - item2[0].asnumpy()) == 0
if __name__ == "__main__":
test_decode_op()
test_decode_op_support_format()
test_read_image_decode_op()