mindspore/tests/ut/python/dataset/test_contrast.py

104 lines
4.4 KiB
Python

# Copyright 2021-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import numpy as np
import pytest
import mindspore.dataset as ds
import mindspore.dataset.audio as audio
from mindspore import log as logger
def count_unequal_element(data_expected, data_me, rtol, atol):
assert data_expected.shape == data_me.shape
total_count = len(data_expected.flatten())
error = np.abs(data_expected - data_me)
greater = np.greater(error, atol + np.abs(data_expected) * rtol)
loss_count = np.count_nonzero(greater)
assert (loss_count / total_count) < rtol, "\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}".format(
data_expected[greater], data_me[greater], error[greater])
def test_func_contrast_eager():
"""
Feature: Contrast op
Description: Test Contrast op in eager mode with valid input
Expectation: Output is equal to the expected output
"""
# Original waveform
waveform = np.array([[1, 2], [3, 4]], dtype=np.float32)
# Expect waveform
expect_waveform = np.array([[1., -8.742277e-08],
[-1., 1.748455e-07]],
dtype=np.float32)
contrast_op = audio.Contrast(75.0)
# Filtered waveform by contrast
output = contrast_op(waveform)
count_unequal_element(expect_waveform, output, 0.0001, 0.0001)
def test_func_contrast_pipeline():
"""
Feature: Contrast op
Description: Test Contrast op in pipeline mode with valid input
Expectation: Output is equal to the expected output
"""
# Original waveform
waveform = np.array([[0.4941969, 0.53911686, 0.4846254], [0.10841596, 0.029320478, 0.52353495],
[0.23657, 0.087965, 0.43579]], dtype=np.float64)
# Expect waveform
expect_waveform = np.array([[7.032282948493957520e-01, 7.328570485115051270e-01, 6.967759728431701660e-01],
[2.311619222164154053e-01, 6.433061510324478149e-02,
7.226532697677612305e-01],
[4.539981484413146973e-01, 1.895205676555633545e-01, 6.622338891029357910e-01]],
dtype=np.float64)
dataset = ds.NumpySlicesDataset(waveform, ["audio"], shuffle=False)
contrast_op = audio.Contrast()
# Filtered waveform by contrast
dataset = dataset.map(
input_columns=["audio"], operations=contrast_op, num_parallel_workers=8)
i = 0
for item in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
count_unequal_element(
expect_waveform[i, :], item['audio'], 0.0001, 0.0001)
i += 1
def test_contrast_invalid_input():
"""
Feature: Contrast op
Description: Test Contrast op with invalid input
Expectation: Correct error and message are thrown as expected
"""
def test_invalid_input(test_name, enhancement_amount, error, error_msg):
logger.info("Test Contrast with bad input: {0}".format(test_name))
with pytest.raises(error) as error_info:
audio.Contrast(enhancement_amount)
assert error_msg in str(error_info.value)
test_invalid_input("invalid enhancement_amount parameter type as a String", "75.0", TypeError,
"Argument enhancement_amount with value 75.0 is not of type [<class 'float'>, <class 'int'>],"
+ " but got <class 'str'>.")
test_invalid_input("invalid enhancement_amount parameter value", -1, ValueError,
"Input enhancement_amount is not within the required interval of [0, 100].")
test_invalid_input("invalid enhancement_amount parameter value", 101, ValueError,
"Input enhancement_amount is not within the required interval of [0, 100].")
if __name__ == "__main__":
test_func_contrast_eager()
test_func_contrast_pipeline()
test_contrast_invalid_input()