mindspore/tests/ut/python/nn/test_psnr.py

106 lines
3.1 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
test psnr
"""
import numpy as np
import pytest
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common import dtype as mstype
from mindspore.common.api import _executor
class PSNRNet(nn.Cell):
def __init__(self, max_val=1.0):
super(PSNRNet, self).__init__()
self.net = nn.PSNR(max_val)
def construct(self, img1, img2):
return self.net(img1, img2)
def test_compile_psnr():
max_val = 1.0
net = PSNRNet(max_val)
img1 = Tensor(np.random.random((8, 3, 16, 16)))
img2 = Tensor(np.random.random((8, 3, 16, 16)))
_executor.compile(net, img1, img2)
def test_compile_psnr_grayscale():
max_val = 255
net = PSNRNet(max_val)
img1 = Tensor(np.random.randint(0, 256, (8, 1, 16, 16), np.uint8))
img2 = Tensor(np.random.randint(0, 256, (8, 1, 16, 16), np.uint8))
_executor.compile(net, img1, img2)
def test_psnr_max_val_negative():
max_val = -1
with pytest.raises(ValueError):
net = PSNRNet(max_val)
def test_psnr_max_val_bool():
max_val = True
with pytest.raises(TypeError):
net = PSNRNet(max_val)
def test_psnr_max_val_zero():
max_val = 0
with pytest.raises(ValueError):
net = PSNRNet(max_val)
def test_psnr_different_shape():
shape_1 = (8, 3, 16, 16)
shape_2 = (8, 3, 8, 8)
img1 = Tensor(np.random.random(shape_1))
img2 = Tensor(np.random.random(shape_2))
net = PSNRNet()
with pytest.raises(ValueError):
_executor.compile(net, img1, img2)
def test_psnr_different_dtype():
dtype_1 = mstype.float32
dtype_2 = mstype.float16
img1 = Tensor(np.random.random((8, 3, 16, 16)), dtype=dtype_1)
img2 = Tensor(np.random.random((8, 3, 16, 16)), dtype=dtype_2)
net = PSNRNet()
with pytest.raises(TypeError):
_executor.compile(net, img1, img2)
def test_psnr_invalid_5d_input():
shape_1 = (8, 3, 16, 16)
shape_2 = (8, 3, 8, 8)
invalid_shape = (8, 3, 16, 16, 1)
img1 = Tensor(np.random.random(shape_1))
invalid_img1 = Tensor(np.random.random(invalid_shape))
img2 = Tensor(np.random.random(shape_2))
invalid_img2 = Tensor(np.random.random(invalid_shape))
net = PSNRNet()
with pytest.raises(ValueError):
_executor.compile(net, invalid_img1, img2)
with pytest.raises(ValueError):
_executor.compile(net, img1, invalid_img2)
with pytest.raises(ValueError):
_executor.compile(net, invalid_img1, invalid_img2)