90 lines
3.2 KiB
Python
90 lines
3.2 KiB
Python
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore.nn import TrainOneStepCell, WithLossCell
|
|
from mindspore.nn.optim import Momentum
|
|
from mindspore.ops import operations as P
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
|
|
|
|
class LeNet(nn.Cell):
|
|
def __init__(self):
|
|
super(LeNet, self).__init__()
|
|
self.relu = P.ReLU()
|
|
self.batch_size = 32
|
|
|
|
self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid')
|
|
self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid')
|
|
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
|
|
self.reshape = P.Reshape()
|
|
self.fc1 = nn.Dense(400, 120)
|
|
self.fc1.matmul.set_device("CPU")
|
|
self.fc1.bias_add.set_device("CPU")
|
|
self.fc2 = nn.Dense(120, 84)
|
|
self.fc2.matmul.set_device("CPU")
|
|
self.fc2.bias_add.set_device("CPU")
|
|
self.fc3 = nn.Dense(84, 10)
|
|
self.fc3.matmul.set_device("CPU")
|
|
self.fc3.bias_add.set_device("CPU")
|
|
|
|
def construct(self, input_x):
|
|
output = self.conv1(input_x)
|
|
output = self.relu(output)
|
|
output = self.pool(output)
|
|
output = self.conv2(output)
|
|
output = self.relu(output)
|
|
output = self.pool(output)
|
|
output = self.reshape(output, (self.batch_size, -1))
|
|
output = self.fc1(output)
|
|
output = self.relu(output)
|
|
output = self.fc2(output)
|
|
output = self.relu(output)
|
|
output = self.fc3(output)
|
|
return output
|
|
|
|
|
|
def train(net, data, label):
|
|
learning_rate = 0.01
|
|
momentum = 0.9
|
|
|
|
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
|
|
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
|
|
net_with_criterion = WithLossCell(net, criterion)
|
|
train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
|
|
train_network.set_train()
|
|
res = train_network(data, label)
|
|
print("+++++++++Loss+++++++++++++")
|
|
print(res)
|
|
print("+++++++++++++++++++++++++++")
|
|
diff = res.asnumpy()[0] - 2.3025851
|
|
assert np.all(diff < 1.e-6)
|
|
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_lenet():
|
|
data = Tensor(np.ones([32, 1, 32, 32]).astype(np.float32) * 0.01)
|
|
label = Tensor(np.ones([32]).astype(np.int32))
|
|
net = LeNet()
|
|
train(net, data, label)
|