mindspore/tests/ut/python/parallel/test_allreduce_fusion.py

289 lines
11 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import pytest
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor, context
from mindspore.common.api import _cell_graph_executor
from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.nn.optim import Lamb
from mindspore.nn.optim.momentum import Momentum
from mindspore.ops import operations as P
from mindspore.parallel import _cost_model_context as cost_model_context
from mindspore.parallel._auto_parallel_context import auto_parallel_context
from mindspore.train import Model
from mindspore.context import ParallelMode
from tests.dataset_mock import MindData
context.set_context(mode=context.PYNATIVE_MODE)
class Net(nn.Cell):
"""Net definition"""
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Dense(128, 768, activation='relu')
self.fc2 = nn.Dense(128, 768, activation='relu')
self.fc3 = nn.Dense(128, 768, activation='relu')
self.fc4 = nn.Dense(768, 768, activation='relu')
self.relu4 = nn.ReLU()
self.relu5 = nn.ReLU()
self.transpose = P.Transpose()
self.matmul1 = P.MatMul()
self.matmul2 = P.MatMul()
def construct(self, x):
q = self.fc1(x)
k = self.fc2(x)
v = self.fc3(x)
k = self.transpose(k, (1, 0))
c = self.relu4(self.matmul1(q, k))
s = self.relu5(self.matmul2(c, v))
s = self.fc4(s)
return s
class Dataset(MindData):
def __init__(self, predict, label, length=3):
super(Dataset, self).__init__(size=length)
self.predict = predict
self.label = label
self.index = 0
self.length = length
def __iter__(self):
return self
def __next__(self):
if self.index >= self.length:
raise StopIteration
self.index += 1
return self.predict, self.label
def reset(self):
self.index = 0
class DenseNet1(nn.Cell):
def __init__(self, has_bias=True, activation='relu'):
super(DenseNet1, self).__init__()
self.fc1 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
self.fc2 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
self.fc3 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
self.fc4 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
def construct(self, x):
q = self.fc1(x)
k = self.fc2(q)
v = self.fc3(k)
s = self.fc4(v)
return s
class DenseNet2(nn.Cell):
def __init__(self, has_bias=True, activation='relu'):
super(DenseNet2, self).__init__()
self.fc1 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
self.fc2 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
self.fc3 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
self.fc4 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
self.fc5 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
self.fc6 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
self.fc7 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
self.fc8 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
def construct(self, x):
q = self.fc1(x)
k = self.fc2(q)
v = self.fc3(k)
s = self.fc4(v)
t = self.fc5(s)
u = self.fc6(t)
w = self.fc7(u)
z = self.fc8(w)
return z
class DenseNet3(nn.Cell):
def __init__(self, has_bias=True, activation='relu'):
super(DenseNet3, self).__init__()
self.fc1 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
def construct(self, x):
q = self.fc1(x)
return q
class SimpleDMLNet(nn.Cell):
def __init__(self, net1, net2):
super(SimpleDMLNet, self).__init__()
self.backbone1 = net1
self.backbone2 = net2
def construct(self, x):
x1 = self.backbone1(x)
x2 = self.backbone2(x)
return x1 + x2
def train_common(net):
batch_size = 32
learning_rate = 0.1
momentum = 0.9
epoch_size = 2
device_num = 4
context.set_auto_parallel_context(device_num=device_num, parameter_broadcast=False)
context.set_context(mode=context.GRAPH_MODE)
predict = Tensor(np.ones([batch_size, 128]), dtype=ms.float32)
label = Tensor(np.ones([batch_size]), dtype=ms.int32)
dataset = Dataset(predict, label, 2)
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
opt = Momentum(net.trainable_params(), learning_rate, momentum)
model = Model(net, loss, opt)
model.train(epoch_size, dataset, dataset_sink_mode=False)
allreduce_fusion_dict = _cell_graph_executor._get_allreduce_fusion(model._train_network)
print(allreduce_fusion_dict)
return allreduce_fusion_dict
def test_allreduce_fusion_auto():
"""
Feature: test_allreduce_fusion in auto mode
Description: allreduce fusion in auto mode
Expectation: success
"""
comm_fusion_dict = {"allreduce": {"mode": "auto", "config": None}}
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, comm_fusion=comm_fusion_dict)
net = SimpleDMLNet(DenseNet1(has_bias=False, activation=None), DenseNet2(has_bias=False, activation=None))
allreduce_fusion_dict = train_common(net)
expect_dict = {'backbone2.fc8.weight': 1,
'backbone2.fc7.weight': 1,
'backbone2.fc6.weight': 1,
'backbone1.fc4.weight': 1,
'backbone1.fc3.weight': 1,
'backbone1.fc2.weight': 1,
'backbone2.fc5.weight': 1,
'backbone2.fc4.weight': 1,
'backbone2.fc3.weight': 1,
'backbone2.fc2.weight': 1,
'backbone2.fc1.weight': 1,
'backbone1.fc1.weight': 1}
assert allreduce_fusion_dict == expect_dict
def test_allreduce_fusion_size():
"""
Feature: test_allreduce_fusion in size mode
Description: allreduce fusion in size mode
Expectation: success
"""
comm_fusion_dict = {"allreduce": {"mode": "size", "config": 32}}
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, comm_fusion=comm_fusion_dict)
net = SimpleDMLNet(DenseNet1(has_bias=False, activation=None), DenseNet2(has_bias=False, activation=None))
allreduce_fusion_dict = train_common(net)
expect_dict = {'backbone2.fc8.weight': 1,
'backbone2.fc7.weight': 1,
'backbone2.fc6.weight': 1,
'backbone1.fc4.weight': 1,
'backbone1.fc3.weight': 1,
'backbone1.fc2.weight': 1,
'backbone2.fc5.weight': 1,
'backbone2.fc4.weight': 1,
'backbone2.fc3.weight': 1,
'backbone2.fc2.weight': 1,
'backbone2.fc1.weight': 1,
'backbone1.fc1.weight': 1}
assert allreduce_fusion_dict == expect_dict
cost_model_context.reset_cost_model_context()
comm_fusion = auto_parallel_context().get_comm_fusion()
assert comm_fusion_dict == comm_fusion
def test_lamb_split_fusion_in_index():
"""
Feature: test_allreduce_fusion in index mode
Description: allreduce fusion in index mode
Expectation: success
"""
comm_fusion_dict = {"allreduce": {"mode": "index", "config": [2, 4, 6, 8]}}
context.set_auto_parallel_context(parallel_mode="data_parallel", device_num=2, enable_parallel_optimizer=True,
comm_fusion=comm_fusion_dict)
inputs = Tensor(np.ones([32, 128]).astype(np.float32))
label = Tensor(np.zeros([32, 768]).astype(np.float32))
net = Net()
net.set_train()
loss = nn.SoftmaxCrossEntropyWithLogits()
optimizer = Lamb(net.trainable_params(), learning_rate=0.1)
net_with_loss = WithLossCell(net, loss)
train_network = TrainOneStepCell(net_with_loss, optimizer)
_cell_graph_executor.compile(train_network, inputs, label)
context.reset_auto_parallel_context()
def test_allreduce_fusion_size_priority():
"""
Feature: test priority of "enable_all_reduce_fusion" and "comm_fusion"
Description: test priority of "enable_all_reduce_fusion" and "comm_fusion"
Expectation: success
"""
auto_parallel_context().set_enable_all_reduce_fusion(enable_all_reduce_fusion=False)
comm_fusion_dict = {"allreduce": {"mode": "size", "config": 32}}
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, comm_fusion=comm_fusion_dict)
net = SimpleDMLNet(DenseNet1(has_bias=False, activation=None), DenseNet2(has_bias=False, activation=None))
allreduce_fusion_dict = train_common(net)
expect_dict = {}
assert allreduce_fusion_dict == expect_dict
auto_parallel_context().set_enable_all_reduce_fusion(enable_all_reduce_fusion=True)
allreduce_fusion_dict = train_common(net)
expect_dict = {'backbone2.fc8.weight': 1,
'backbone2.fc7.weight': 1,
'backbone2.fc6.weight': 1,
'backbone1.fc4.weight': 1,
'backbone1.fc3.weight': 1,
'backbone1.fc2.weight': 1,
'backbone2.fc5.weight': 1,
'backbone2.fc4.weight': 1,
'backbone2.fc3.weight': 1,
'backbone2.fc2.weight': 1,
'backbone2.fc1.weight': 1,
'backbone1.fc1.weight': 1}
assert allreduce_fusion_dict == expect_dict
def test_allreduce_fusion_size_one_tensor():
"""
Feature: test_allreduce_fusion in size mode with one tensor
Description: test_allreduce_fusion in size mode with one tensor
Expectation: success
"""
comm_fusion_dict = {"allreduce": {"mode": "size", "config": 32}}
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, comm_fusion=comm_fusion_dict)
net = DenseNet3(has_bias=False, activation=None)
allreduce_fusion_dict = train_common(net)
expect_dict = {'fc1.weight': 1}
assert allreduce_fusion_dict == expect_dict
def test_fusion_invalid_value_failed():
"""
Feature: test_allreduce_fusion with invalid value
Description: test_allreduce_fusion with invalid value
Expectation: throw TypeError
"""
with pytest.raises(TypeError):
comm_fusion_dict = {"allreduce": {"mode": "size", "config": "30.12"}}
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, comm_fusion=comm_fusion_dict)
def test_enable_invalid_value_failed():
"""
Feature: enable_all_reduce_fusion with invalid value
Description: enable_all_reduce_fusion with invalid value
Expectation: throw TypeError
"""
with pytest.raises(TypeError):
auto_parallel_context().set_enable_all_reduce_fusion(enable_all_reduce_fusion="fusion")