mindspore/tests/syntax/simple_expression/test_hypermap.py

190 lines
7.3 KiB
Python

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
import numpy as np
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from mindspore.nn import Cell
add = P.Add()
hyper_map = C.HyperMap()
@ms_function
def main_noleaf(x, y):
return hyper_map(add, x, y)
def test_hypermap_noleaf_tuple_list_mix():
"""
Feature: Check the types of inputs of HyperMap.
Description: The types of inputs of HyperMap must be the same.
Expectation: The types of inputs of HyperMap must be the same.
"""
tensor1 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32'))
tensor2 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32'))
with pytest.raises(Exception, match="the types of arguments in HyperMap must be consistent"):
main_noleaf((tensor1, 1), [tensor2, 2])
def test_hypermap_noleaf_tuple_length():
"""
Feature: Check the length of arg of Tuple in HyperMap.
Description: The length of inputs of HyperMap must be the same.
Expectation: The length of inputs of HyperMap must be the same.
"""
tensor1 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32'))
tensor2 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32'))
with pytest.raises(Exception, match="The length of tuples in HyperMap must be the same"):
main_noleaf((tensor1, 1), (tensor2, 2, 2))
def test_hypermap_noleaf_list_length():
"""
Feature: Check the length of arg of List in HyperMap.
Description: Check the length of arg of List in HyperMap.
Expectation: Check the length of arg of List in HyperMap.
"""
tensor1 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32'))
tensor2 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32'))
with pytest.raises(Exception, match="The lists in HyperMap should have the same length"):
main_noleaf([tensor1], [tensor2, tensor2])
def test_hypermap_noleaf_list_tuple():
"""
Feature: Check the types of inputs of HyperMap.
Description: The types of inputs of HyperMap must be the same.
Expectation: The types of inputs of HyperMap must be the same.
"""
tensor1 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32'))
tensor2 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32'))
with pytest.raises(Exception, match="the types of arguments in HyperMap must be consistent"):
main_noleaf([tensor1], (tensor2, tensor2))
def test_tuple_slice_stop_index():
"""
Feature: Check the type of stop index of slice.
Description: The type of stop index of slice must be scalar, None or Tensor.
Expectation: The type of stop index of slice must be scalar, None or Tensor.
"""
class TupleSliceNet(Cell):
def __init__(self):
super(TupleSliceNet, self).__init__()
self.addn = P.AddN()
self.index_0 = Tensor(3)
def construct(self, tensor_tuple):
tensor_tuple_slice0 = tensor_tuple[:]
tensor_tuple_slice1 = tensor_tuple[self.index_0:"str"] # slice should be Scalar or None, rather than string
sum0 = self.addn(tensor_tuple_slice0)
sum1 = self.addn(tensor_tuple_slice1)
ret = sum0 + sum1
return ret
data = (Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)))
net = TupleSliceNet()
with pytest.raises(Exception, match="Slice indices must be integers or bool."):
output = net(data)
print("output:", output)
def test_tuple_slice_start_index():
"""
Feature: Check the type of start index of slice.
Description: The type of start index of slice must be scalar, None or Tensor.
Expectation: The type of start index of slice must be scalar, None or Tensor.
"""
class TupleSliceNet(Cell):
def __init__(self):
super(TupleSliceNet, self).__init__()
self.addn = P.AddN()
self.index_0 = Tensor(3)
self.index_1 = Tensor([5])
self.index_3 = Tensor([True])
def construct(self, tensor_tuple):
tensor_tuple_slice0 = tensor_tuple[:]
tensor_tuple_slice1 = tensor_tuple["str":self.index_0]
tensor_tuple_slice2 = tensor_tuple[self.index_3:]
tensor_tuple_slice3 = tensor_tuple[2:self.index_1:]
sum0 = self.addn(tensor_tuple_slice0)
sum1 = self.addn(tensor_tuple_slice1)
sum2 = self.addn(tensor_tuple_slice2)
sum3 = self.addn(tensor_tuple_slice3)
ret = sum0 + sum1 + sum2 + sum3
return ret
data = (Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)))
net = TupleSliceNet()
with pytest.raises(Exception, match="Slice indices must be integers or bool."):
output = net(data)
print("output:", output)
def test_tuple_slice_step():
"""
Feature: Check the type of step of slice.
Description: The type of step of slice must not be 0.
Expectation: The type of step of slice must be scalar, None or Tensor.
"""
class TupleSliceNet(Cell):
def __init__(self):
super(TupleSliceNet, self).__init__()
self.addn = P.AddN()
self.index_0 = Tensor(3)
self.index_1 = Tensor([5])
self.index_3 = Tensor([True])
def construct(self, tensor_tuple):
tensor_tuple_slice0 = tensor_tuple[:]
tensor_tuple_slice1 = tensor_tuple[:self.index_0]
tensor_tuple_slice2 = tensor_tuple[self.index_3:]
tensor_tuple_slice3 = tensor_tuple[2:self.index_1:0]
sum0 = self.addn(tensor_tuple_slice0)
sum1 = self.addn(tensor_tuple_slice1)
sum2 = self.addn(tensor_tuple_slice2)
sum3 = self.addn(tensor_tuple_slice3)
ret = sum0 + sum1 + sum2 + sum3
return ret
data = (Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)))
net = TupleSliceNet()
with pytest.raises(Exception, match="Slice step cannot be zero."):
output = net(data)
print("output:", output)