81 lines
2.2 KiB
Python
81 lines
2.2 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
'''Remove after MindData merge to MindSpore '''
|
|
import numpy as np
|
|
|
|
from mindspore import Tensor
|
|
|
|
|
|
class MindData:
|
|
""" Stub for MindData """
|
|
|
|
def __init__(self, size=None, batch_size=None, repeat_count=1,
|
|
np_types=None, output_shapes=None, input_indexs=()):
|
|
self._size = size
|
|
self._batch_size = batch_size
|
|
self._repeat_count = repeat_count
|
|
self._np_types = np_types
|
|
self._output_shapes = output_shapes
|
|
self._input_indexs = input_indexs
|
|
self._iter_num = 0
|
|
|
|
def get_dataset_size(self):
|
|
return self._size
|
|
|
|
def get_repeat_count(self):
|
|
return self._repeat_count
|
|
|
|
def get_batch_size(self):
|
|
return self._batch_size
|
|
|
|
def output_types(self):
|
|
return self._np_types
|
|
|
|
def output_shapes(self):
|
|
return self._output_shapes
|
|
|
|
@property
|
|
def input_indexs(self):
|
|
return self._input_indexs
|
|
|
|
def device_que(self):
|
|
self.queue_name = '6ba41974-209e-11ea-88b0-a24efeb2c736'
|
|
return self
|
|
|
|
def send(self):
|
|
pass
|
|
|
|
def __len__(self):
|
|
return self._size
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __next__(self):
|
|
if self._size < self._iter_num:
|
|
raise StopIteration
|
|
self._iter_num += 1
|
|
next_value = []
|
|
for shape, typ in zip(self._output_shapes, self._np_types):
|
|
next_value.append(Tensor(np.ndarray(shape, typ)))
|
|
|
|
return tuple(next_value)
|
|
|
|
def next(self):
|
|
return self.__next__()
|
|
|
|
def reset(self):
|
|
self._iter_num = 0
|