optimize code docs about Loss and MSE

This commit is contained in:
tacyi139 2021-12-01 11:38:20 +08:00
parent 91d0897399
commit fd363472a7
2 changed files with 7 additions and 1 deletions

View File

@ -97,7 +97,7 @@ class MSE(Metric):
Measures the mean squared error(MSE).
Creates a criterion that measures the MSE (squared L2 norm) between
each element in the predition and the ground truth: :math:`x` and: :math:`y`.
each element in the prediction and the ground truth: :math:`x` and: :math:`y`.
.. math::
\text{MSE}(x,\ y) = \frac{\sum_{i=1}^n(y_i - x_i)^2}{n}
@ -106,6 +106,7 @@ class MSE(Metric):
Examples:
>>> import numpy as np
>>> import mindspore
>>> from mindspore import nn, Tensor
>>>
>>> x = Tensor(np.array([0.1, 0.2, 0.6, 0.9]), mindspore.float32)
@ -114,6 +115,8 @@ class MSE(Metric):
>>> error.clear()
>>> error.update(x, y)
>>> result = error.eval()
>>> print(result)
0.0031250009778887033
"""
def __init__(self):
super(MSE, self).__init__()

View File

@ -26,6 +26,7 @@ class Loss(Metric):
Examples:
>>> import numpy as np
>>> import mindspore
>>> from mindspore import nn, Tensor
>>>
>>> x = Tensor(np.array(0.2), mindspore.float32)
@ -33,6 +34,8 @@ class Loss(Metric):
>>> loss.clear()
>>> loss.update(x)
>>> result = loss.eval()
>>> print(result)
0.20000000298023224
"""
def __init__(self):
super(Loss, self).__init__()