amend yolov5 and centerface Readme
This commit is contained in:
parent
1790db17dd
commit
f84cf543d7
|
@ -648,11 +648,11 @@ The ckpt_file parameter is required,
|
|||
### Infer on Ascend310
|
||||
|
||||
Before performing inference, the mindir file must be exported by `export.py` script. We only provide an example of inference using MINDIR model.
|
||||
Need to install OpenCV, You can download it from [OpenCV](https://opencv.org/).
|
||||
Need to install OpenCV(Version >= 4.0), You can download it from [OpenCV](https://opencv.org/).
|
||||
|
||||
```shell
|
||||
# Ascend310 inference
|
||||
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DVPP] [DEVICE_ID]
|
||||
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [SAVE_PATH] [LABEL_PATH] [DVPP] [DEVICE_ID]
|
||||
```
|
||||
|
||||
- `DVPP` is mandatory, and must choose from ["DVPP", "CPU"], it's case-insensitive. Only support CPU mode .
|
||||
|
@ -715,7 +715,7 @@ CenterFace on 3.2K images(The annotation and data format must be the same as wid
|
|||
|
||||
| Parameters | CenterFace |
|
||||
| ------------------- | --------------------------- |
|
||||
| Model Version | CNNCTC |
|
||||
| Model Version | CenterFace |
|
||||
| Resource | Ascend 310; CentOS 3.10 |
|
||||
| Uploaded Date | 23/06/2021 (month/day/year) |
|
||||
| MindSpore Version | 1.2.0 |
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
# ============================================================================
|
||||
|
||||
if [[ $# -lt 5 || $# -gt 6 ]]; then
|
||||
echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [SAVE_PATH] [LABEL_FILE] [DVPP] [DEVICE_ID]
|
||||
echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [SAVE_PATH] [LABEL_PATH] [DVPP] [DEVICE_ID]
|
||||
DVPP is mandatory, and must choose from [DVPP|CPU], it's case-insensitive. Current only support CPU mode.
|
||||
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
|
||||
exit 1
|
||||
|
@ -31,7 +31,7 @@ get_real_path(){
|
|||
model=$(get_real_path $1)
|
||||
data_path=$(get_real_path $2)
|
||||
save_path=$(get_real_path $3)
|
||||
label_file=$(get_real_path $4)
|
||||
label_path=$(get_real_path $4)
|
||||
DVPP=${5^^}
|
||||
device_id=0
|
||||
if [ $# == 6 ]; then
|
||||
|
@ -41,7 +41,7 @@ fi
|
|||
echo "mindir name: "$model
|
||||
echo "dataset path: "$data_path
|
||||
echo "save path: "$save_path
|
||||
echo "label file: "$label_file
|
||||
echo "label path: "$label_path
|
||||
echo "image process mode: "$DVPP
|
||||
echo "device id: "$device_id
|
||||
|
||||
|
@ -101,7 +101,7 @@ function cal_ap()
|
|||
if [ -d ${save_path} ]; then
|
||||
rm -rf ${save_path}
|
||||
fi
|
||||
python3.7 ../postprocess.py --result_path=./result_Files --label_file=$label_file --meta_file=./dataset/meta --save_path=$save_path &> ap.log &
|
||||
python3.7 ../postprocess.py --result_path=./result_Files --label_path=$label_path --meta_path=./dataset/meta --save_path=$save_path &> ap.log &
|
||||
}
|
||||
|
||||
preprocess_data
|
||||
|
|
|
@ -14,12 +14,15 @@
|
|||
- [测试](#测试)
|
||||
- [评估过程](#评估过程)
|
||||
- [评估](#评估)
|
||||
- [转换过程](#转换过程)
|
||||
- [转换](#转换)
|
||||
- [推理过程](#推理过程)
|
||||
- [导出MindIR](#导出mindir)
|
||||
- [在Ascend310执行推理](#在ascend310执行推理)
|
||||
- [结果](#结果)
|
||||
- [模型说明](#模型说明)
|
||||
- [性能](#性能)
|
||||
- [评估性能](#评估性能)
|
||||
- [推理性能](#推理性能)
|
||||
- [310推理性能](#310推理性能)
|
||||
- [ModelZoo主页](#modelzoo主页)
|
||||
|
||||
# [YOLOv5描述](#目录)
|
||||
|
@ -125,9 +128,11 @@ sh run_eval.sh dataset/xxx checkpoint/xxx.ckpt
|
|||
©¸©¤yolov5
|
||||
©À©¤README.md
|
||||
©À©¤mindspore_hub_conf.md # Mindspore Hub配置
|
||||
©À©¤ascend310_infer # 用于310推理
|
||||
©À©¤scripts
|
||||
©À©¤run_standalone_train.sh # 在Ascend中启动单机训练(1卡)
|
||||
©À©¤run_distribute_train.sh # 在Ascend中启动分布式训练(8卡)
|
||||
©À©¤run_infer_310.sh # 在Ascend中启动310推理
|
||||
©¸©¤run_eval.sh # 在Ascend中启动评估
|
||||
©À©¤src
|
||||
©À©¤__init__.py # Python初始化文件
|
||||
|
@ -145,6 +150,8 @@ sh run_eval.sh dataset/xxx checkpoint/xxx.ckpt
|
|||
|
||||
©À©¤eval.py # 评估验证结果
|
||||
©À©¤export.py # 将MindSpore模型转换为AIR模型
|
||||
©À©¤preprocess.py # 310推理前处理脚本
|
||||
©À©¤postprocess.py # 310推理后处理脚本
|
||||
©¸©¤train.py # 训练网络
|
||||
```
|
||||
|
||||
|
@ -306,14 +313,49 @@ sh run_eval.sh dataset/coco2017 checkpoint/yolov5.ckpt
|
|||
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.674
|
||||
```
|
||||
|
||||
## [转换过程](#目录)
|
||||
## [推理过程](#目录)
|
||||
|
||||
### 转换
|
||||
### 导出MindIR
|
||||
|
||||
如果您想推断Ascend 310上的网络,则应将模型转换为AIR:
|
||||
```shell
|
||||
python export.py --ckpt_file [CKPT_PATH] --file_format [EXPORT_FORMAT] --batch_size [BATCH_SIZE]
|
||||
```
|
||||
|
||||
```python
|
||||
python export.py [BATCH_SIZE] [PRETRAINED_BACKBONE]
|
||||
参数ckpt_file为必填项,
|
||||
`EXPORT_FORMAT` 必须在 ["AIR", "MINDIR"]中选择。
|
||||
`BATCH_SIZE` 目前仅支持batch_size为1的推理。
|
||||
|
||||
### 在Ascend310执行推理
|
||||
|
||||
在执行推理前,mindir文件必须通过`export.py`脚本导出。以下展示了使用mindir模型执行推理的示例。
|
||||
|
||||
```shell
|
||||
# Ascend310 inference
|
||||
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [ANN_FILE] [DVPP] [DEVICE_ID]
|
||||
```
|
||||
|
||||
- `ANN_FILE` Annotations 文件路径。
|
||||
- `DVPP` 为必填项,需要在["DVPP", "CPU"]选择,大小写均可。目前仅支持CPU算子推理。
|
||||
- `DEVICE_ID` 可选,默认值为0。
|
||||
|
||||
### 结果
|
||||
|
||||
推理结果保存在脚本执行的当前路径,你可以在acc.log中看到以下精度计算结果。
|
||||
|
||||
```bash
|
||||
=============coco 310 infer reulst=========
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.369
|
||||
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.571
|
||||
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.398
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.216
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.421
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.487
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.301
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.502
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.558
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.388
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.617
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.677
|
||||
```
|
||||
|
||||
# [模型说明](#目录)
|
||||
|
@ -355,6 +397,21 @@ YOLOv5应用于5000张图像上(标注和数据格式必须与COCO val 2017相
|
|||
|精度|map=36.8~37.2%(shape=640)|
|
||||
|推理模型| 58M(.ckpt文件)|
|
||||
|
||||
### 310推理性能
|
||||
|
||||
YOLOv5应用于5000张图像上(标注和数据格式必须与COCO val 2017相同)
|
||||
|
||||
|参数| YOLOv5s |
|
||||
| -------------------------- | ----------------------------------------------------------- |
|
||||
| 资源 | Ascend 310;CPU 2.60GHz,192核;内存:755G |
|
||||
|上传日期| 2021年06月28日 |
|
||||
| MindSpore版本 | 1.2.0 |
|
||||
|数据集|5000张图像|
|
||||
|批处理大小|1|
|
||||
|输出|边框位置和分数,以及概率|
|
||||
|精度|map=36.9%(shape=640)|
|
||||
|推理模型| 58M(.ckpt文件)|
|
||||
|
||||
# [随机情况说明](#目录)
|
||||
|
||||
在dataset.py中,我们设置了“create_dataset”函数内的种子。
|
||||
|
|
Loading…
Reference in New Issue