fix I60Q6L

This commit is contained in:
panfengfeng 2022-11-18 09:49:34 -05:00
parent 1a14ff5c87
commit f84ce5d871
4 changed files with 9 additions and 9 deletions

View File

@ -7,12 +7,12 @@ mindspore.ops.igamma
如果我们将 `input` 比作 `a` `other` 比作 `x` ,则正规化的下层不完全伽马函数可以表示成:
.. math::
P(a, x) = gamma(a, x) / Gamma(a) = 1 - Q(a, x)
P(a, x) = Gamma(a, x) / Gamma(a) = 1 - Q(a, x)
其中,
.. math::
gamma(a, x) = \int_0^x t^{a-1} \exp^{-t} dt
Gamma(a, x) = \int_0^x t^{a-1} \exp^{-t} dt
为下层不完全伽马函数。

View File

@ -7,12 +7,12 @@ mindspore.ops.igammac
如果我们将 `input` 比作 `a` `other` 比作 `x` ,则正规化的下层不完全伽马函数可以表示成:
.. math::
\(Q(a, x) = Gamma(a, x) / Gamma(a) = 1 - P(a, x)\)
Q(a, x) = Gamma(a, x) / Gamma(a) = 1 - P(a, x)
其中,
.. math::
\(Gamma(a, x) = int_{x}^{\infty} t^{a-1} exp(-t) dt\)
Gamma(a, x) = int_{x}^{\infty} t^{a-1} exp(-t) dt
为上层不完全伽马函数。

View File

@ -11,7 +11,7 @@ mindspore.ops.mse_loss
- **input_x** (Tensor) - 任意维度的Tensor。
- **target** (Tensor) - 输入标签任意维度的Tensor。大多数场景下与 `input_x` 具有相同的shape。
但是也支持在两者shape不相同的情况下通过广播保持一致。
- **reduction** (str可选) - 对loss应用特定的缩减方法。可选"mean"、"none"、"sum"。默认值:"mean"
- **reduction** (str可选) - 对loss应用特定的缩减方法。可选"mean"、"none"、"sum"。默认值:"mean"
返回:
Tensor数据类型为float如果 `reduction` 为 'mean'或'sum'时shape为0如果 `reduction` 为 'none'输入的shape则是广播之后的shape。

View File

@ -7110,12 +7110,12 @@ def igamma(input, other):
If we define `input` as `a` and `other` as `x`, the lower regularized incomplete Gamma function is defined as:
.. math::
\(P(a, x) = Gamma(a, x) / Gamma(a) = 1 - Q(a, x)\)
P(a, x) = Gamma(a, x) / Gamma(a) = 1 - Q(a, x)
where
.. math::
\(Gamma(a, x) = \int_0^x t^{a-1} \exp^{-t} dt\)
Gamma(a, x) = \int_0^x t^{a-1} \exp^{-t} dt
is the lower incomplete Gamma function.
@ -7159,12 +7159,12 @@ def igammac(input, other):
If we define `input` as `a` and `other` as `x`, the upper regularized incomplete Gamma function is defined as:
.. math::
\(Q(a, x) = Gamma(a, x) / Gamma(a) = 1 - P(a, x)\)
Q(a, x) = Gamma(a, x) / Gamma(a) = 1 - P(a, x)
where
.. math::
\(Gamma(a, x) = int_{x}^{\infty} t^{a-1} exp(-t) dt\)
Gamma(a, x) = int_{x}^{\infty} t^{a-1} exp(-t) dt
is the upper incomplete Gama function.