!35416 [feat] [assistant] [I501Q7] Add new operator AdjustSharpness
Merge pull request !35416 from EdisonLee/AdjustSharpness
This commit is contained in:
commit
f51c05db19
|
@ -22,6 +22,7 @@
|
|||
|
||||
#include "minddata/dataset/kernels/ir/vision/adjust_brightness_ir.h"
|
||||
#include "minddata/dataset/kernels/ir/vision/adjust_gamma_ir.h"
|
||||
#include "minddata/dataset/kernels/ir/vision/adjust_sharpness_ir.h"
|
||||
#include "minddata/dataset/kernels/ir/vision/auto_augment_ir.h"
|
||||
#include "minddata/dataset/kernels/ir/vision/auto_contrast_ir.h"
|
||||
#include "minddata/dataset/kernels/ir/vision/bounding_box_augment_ir.h"
|
||||
|
@ -101,6 +102,16 @@ PYBIND_REGISTER(
|
|||
}));
|
||||
}));
|
||||
|
||||
PYBIND_REGISTER(AdjustSharpnessOperation, 1, ([](const py::module *m) {
|
||||
(void)py::class_<vision::AdjustSharpnessOperation, TensorOperation,
|
||||
std::shared_ptr<vision::AdjustSharpnessOperation>>(*m, "AdjustSharpnessOperation")
|
||||
.def(py::init([](float sharpness_factor) {
|
||||
auto adjust_sharpness = std::make_shared<vision::AdjustSharpnessOperation>(sharpness_factor);
|
||||
THROW_IF_ERROR(adjust_sharpness->ValidateParams());
|
||||
return adjust_sharpness;
|
||||
}));
|
||||
}));
|
||||
|
||||
PYBIND_REGISTER(
|
||||
AutoAugmentOperation, 1, ([](const py::module *m) {
|
||||
(void)py::class_<vision::AutoAugmentOperation, TensorOperation, std::shared_ptr<vision::AutoAugmentOperation>>(
|
||||
|
|
|
@ -22,6 +22,7 @@
|
|||
|
||||
#include "minddata/dataset/kernels/ir/vision/adjust_brightness_ir.h"
|
||||
#include "minddata/dataset/kernels/ir/vision/adjust_gamma_ir.h"
|
||||
#include "minddata/dataset/kernels/ir/vision/adjust_sharpness_ir.h"
|
||||
#include "minddata/dataset/kernels/ir/vision/affine_ir.h"
|
||||
#include "minddata/dataset/kernels/ir/vision/auto_augment_ir.h"
|
||||
#include "minddata/dataset/kernels/ir/vision/auto_contrast_ir.h"
|
||||
|
@ -150,6 +151,18 @@ std::shared_ptr<TensorOperation> AdjustGamma::Parse() {
|
|||
return std::make_shared<AdjustGammaOperation>(data_->gamma_, data_->gain_);
|
||||
}
|
||||
|
||||
// AdjustSharpness Transform Operation.
|
||||
struct AdjustSharpness::Data {
|
||||
explicit Data(float sharpness_factor) : sharpness_factor_(sharpness_factor) {}
|
||||
float sharpness_factor_;
|
||||
};
|
||||
|
||||
AdjustSharpness::AdjustSharpness(float sharpness_factor) : data_(std::make_shared<Data>(sharpness_factor)) {}
|
||||
|
||||
std::shared_ptr<TensorOperation> AdjustSharpness::Parse() {
|
||||
return std::make_shared<AdjustSharpnessOperation>(data_->sharpness_factor_);
|
||||
}
|
||||
|
||||
// AutoAugment Transform Operation.
|
||||
struct AutoAugment::Data {
|
||||
Data(AutoAugmentPolicy policy, InterpolationMode interpolation, const std::vector<uint8_t> &fill_value)
|
||||
|
|
|
@ -99,6 +99,37 @@ class MS_API AdjustGamma final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Apply adjust sharpness on input image. Input image is expected to be in [H, W, C] or [H, W] format.
|
||||
class MS_API AdjustSharpness final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] sharpness_factor How much to adjust the sharpness. Can be any Non negative real number.
|
||||
/// 0 gives a blurred image, 1 gives the original image while 2 increases the Sharpness by a factor of 2.
|
||||
/// \par Example
|
||||
/// \code
|
||||
/// /* Define operations */
|
||||
/// auto decode_op = vision::Decode();
|
||||
/// auto adjust_sharpness_op = vision::AdjustSharpness(2.0);
|
||||
///
|
||||
/// /* dataset is an instance of Dataset object */
|
||||
/// dataset = dataset->Map({decode_op, adjust_sharpness_op}, // operations
|
||||
/// {"image"}); // input columns
|
||||
/// \endcode
|
||||
explicit AdjustSharpness(float sharpness_factor);
|
||||
|
||||
/// \brief Destructor.
|
||||
~AdjustSharpness() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Apply AutoAugment data augmentation method.
|
||||
class MS_API AutoAugment final : public TensorTransform {
|
||||
public:
|
||||
|
|
|
@ -4,6 +4,7 @@ set_property(SOURCE ${_CURRENT_SRC_FILES} PROPERTY COMPILE_DEFINITIONS SUBMODULE
|
|||
set(DATASET_KERNELS_IR_VISION_SRC_FILES
|
||||
adjust_brightness_ir.cc
|
||||
adjust_gamma_ir.cc
|
||||
adjust_sharpness_ir.cc
|
||||
affine_ir.cc
|
||||
auto_augment_ir.cc
|
||||
auto_contrast_ir.cc
|
||||
|
|
|
@ -0,0 +1,58 @@
|
|||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "minddata/dataset/kernels/ir/vision/adjust_sharpness_ir.h"
|
||||
|
||||
#ifndef ENABLE_ANDROID
|
||||
#include "minddata/dataset/kernels/image/sharpness_op.h"
|
||||
#endif
|
||||
#include "minddata/dataset/kernels/ir/validators.h"
|
||||
#include "minddata/dataset/util/validators.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
namespace vision {
|
||||
#ifndef ENABLE_ANDROID
|
||||
// AdjustSharpnessOperation
|
||||
AdjustSharpnessOperation::AdjustSharpnessOperation(float sharpness_factor) : sharpness_factor_(sharpness_factor) {}
|
||||
|
||||
Status AdjustSharpnessOperation::ValidateParams() {
|
||||
// sharpness_factor
|
||||
RETURN_IF_NOT_OK(ValidateFloatScalarNonNegative("AdjustSharpness", "sharpness_factor", sharpness_factor_));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
std::shared_ptr<TensorOp> AdjustSharpnessOperation::Build() {
|
||||
std::shared_ptr<SharpnessOp> tensor_op = std::make_shared<SharpnessOp>(sharpness_factor_);
|
||||
return tensor_op;
|
||||
}
|
||||
|
||||
Status AdjustSharpnessOperation::to_json(nlohmann::json *out_json) {
|
||||
nlohmann::json args;
|
||||
args["sharpness_factor"] = sharpness_factor_;
|
||||
*out_json = args;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status AdjustSharpnessOperation::from_json(nlohmann::json op_params, std::shared_ptr<TensorOperation> *operation) {
|
||||
RETURN_IF_NOT_OK(ValidateParamInJson(op_params, "sharpness_factor", kAdjustSharpnessOperation));
|
||||
float sharpness_factor = op_params["sharpness_factor"];
|
||||
*operation = std::make_shared<vision::AdjustSharpnessOperation>(sharpness_factor);
|
||||
return Status::OK();
|
||||
}
|
||||
#endif
|
||||
} // namespace vision
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,58 @@
|
|||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_IR_VISION_ADJUST_SHARPNESS_IR_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_IR_VISION_ADJUST_SHARPNESS_IR_H_
|
||||
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "include/api/status.h"
|
||||
#include "minddata/dataset/include/dataset/constants.h"
|
||||
#include "minddata/dataset/include/dataset/transforms.h"
|
||||
#include "minddata/dataset/kernels/ir/tensor_operation.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
namespace vision {
|
||||
constexpr char kAdjustSharpnessOperation[] = "AdjustSharpness";
|
||||
|
||||
class AdjustSharpnessOperation : public TensorOperation {
|
||||
public:
|
||||
explicit AdjustSharpnessOperation(float sharpness_factor);
|
||||
|
||||
~AdjustSharpnessOperation() = default;
|
||||
|
||||
std::shared_ptr<TensorOp> Build() override;
|
||||
|
||||
Status ValidateParams() override;
|
||||
|
||||
std::string Name() const override { return kAdjustSharpnessOperation; }
|
||||
|
||||
Status to_json(nlohmann::json *out_json) override;
|
||||
|
||||
static Status from_json(nlohmann::json op_params, std::shared_ptr<TensorOperation> *operation);
|
||||
|
||||
private:
|
||||
float sharpness_factor_;
|
||||
};
|
||||
} // namespace vision
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_IR_VISION_ADJUST_SHARPNESS_IR_H_
|
|
@ -44,8 +44,8 @@ from . import c_transforms
|
|||
from . import py_transforms
|
||||
from . import transforms
|
||||
from . import utils
|
||||
from .transforms import AdjustBrightness, AdjustGamma, AutoAugment, AutoContrast, BoundingBoxAugment, CenterCrop, \
|
||||
ConvertColor, Crop, CutMixBatch, CutOut, Decode, Equalize, Erase, FiveCrop, GaussianBlur, Grayscale, \
|
||||
from .transforms import AdjustBrightness, AdjustGamma, AdjustSharpness, AutoAugment, AutoContrast, BoundingBoxAugment, \
|
||||
CenterCrop, ConvertColor, Crop, CutMixBatch, CutOut, Decode, Equalize, Erase, FiveCrop, GaussianBlur, Grayscale, \
|
||||
HorizontalFlip, HsvToRgb, HWC2CHW, Invert, LinearTransformation, MixUp, MixUpBatch, Normalize, NormalizePad, Pad, \
|
||||
PadToSize, RandomAdjustSharpness, RandomAffine, RandomAutoContrast, RandomColor, RandomColorAdjust, RandomCrop, \
|
||||
RandomCropDecodeResize, RandomCropWithBBox, RandomEqualize, RandomErasing, RandomGrayscale, RandomHorizontalFlip, \
|
||||
|
|
|
@ -62,11 +62,11 @@ from mindspore._c_expression import typing
|
|||
from . import py_transforms_util as util
|
||||
from .py_transforms_util import is_pil
|
||||
from .utils import AutoAugmentPolicy, Border, ConvertMode, ImageBatchFormat, Inter, SliceMode, parse_padding
|
||||
from .validators import check_adjust_brightness, check_adjust_gamma, check_alpha, check_auto_augment, \
|
||||
check_auto_contrast, check_bounding_box_augment_cpp, check_center_crop, check_convert_color, check_crop, \
|
||||
check_cut_mix_batch_c, check_cutout_new, check_decode, check_erase, check_five_crop, check_gaussian_blur, \
|
||||
check_hsv_to_rgb, check_linear_transform, check_mix_up, check_mix_up_batch_c, check_normalize, \
|
||||
check_normalizepad, check_num_channels, check_pad, check_pad_to_size, check_positive_degrees, \
|
||||
from .validators import check_adjust_brightness, check_adjust_gamma, check_adjust_sharpness, check_alpha, \
|
||||
check_auto_augment, check_auto_contrast, check_bounding_box_augment_cpp, check_center_crop, check_convert_color, \
|
||||
check_crop, check_cut_mix_batch_c, check_cutout_new, check_decode, check_erase, check_five_crop, \
|
||||
check_gaussian_blur, check_hsv_to_rgb, check_linear_transform, check_mix_up, check_mix_up_batch_c, \
|
||||
check_normalize, check_normalizepad, check_num_channels, check_pad, check_pad_to_size, check_positive_degrees, \
|
||||
check_posterize, check_prob, check_random_adjust_sharpness, check_random_affine, check_random_auto_contrast, \
|
||||
check_random_color_adjust, check_random_crop, check_random_erasing, check_random_perspective, \
|
||||
check_random_resize_crop, check_random_rotation, check_random_select_subpolicy_op, check_random_solarize, \
|
||||
|
@ -194,6 +194,38 @@ class AdjustGamma(ImageTensorOperation, PyTensorOperation):
|
|||
return util.adjust_gamma(img, self.gamma, self.gain)
|
||||
|
||||
|
||||
class AdjustSharpness(ImageTensorOperation):
|
||||
r"""
|
||||
Adjust sharpness of input image. Input image is expected to be in [H, W, C] or [H, W] format.
|
||||
|
||||
Args:
|
||||
sharpness_factor (float): How much to adjust the sharpness, should be a
|
||||
non negative number. 0 gives a blurred image, 1 gives the
|
||||
original image while 2 increases the Sharpness by a factor of 2.
|
||||
|
||||
Raises:
|
||||
TypeError: If `sharpness_factor` is not of type float.
|
||||
ValueError: If `sharpness_factor` is less than 0.
|
||||
RuntimeError: If given tensor shape is not <H, W, C> or <H, W>.
|
||||
|
||||
Supported Platforms:
|
||||
``CPU``
|
||||
|
||||
Examples:
|
||||
>>> transforms_list = [vision.Decode(), vision.AdjustSharpness(sharpness_factor=2.0)]
|
||||
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list,
|
||||
... input_columns=["image"])
|
||||
"""
|
||||
@check_adjust_sharpness
|
||||
def __init__(self, sharpness_factor):
|
||||
super().__init__()
|
||||
self.sharpness_factor = sharpness_factor
|
||||
self.implementation = Implementation.C
|
||||
|
||||
def parse(self):
|
||||
return cde.AdjustSharpnessOperation(self.sharpness_factor)
|
||||
|
||||
|
||||
class AutoAugment(ImageTensorOperation):
|
||||
"""
|
||||
Apply AutoAugment data augmentation method based on
|
||||
|
|
|
@ -1024,6 +1024,19 @@ def check_adjust_gamma(method):
|
|||
return new_method
|
||||
|
||||
|
||||
def check_adjust_sharpness(method):
|
||||
"""Wrapper method to check the parameters of AdjustSharpness ops (Python and C++)."""
|
||||
|
||||
@wraps(method)
|
||||
def new_method(self, *args, **kwargs):
|
||||
[sharpness_factor], _ = parse_user_args(method, *args, **kwargs)
|
||||
type_check(sharpness_factor, (float, int), "sharpness_factor")
|
||||
check_value(sharpness_factor, (0, FLOAT_MAX_INTEGER))
|
||||
return method(self, *args, **kwargs)
|
||||
|
||||
return new_method
|
||||
|
||||
|
||||
def check_auto_contrast(method):
|
||||
"""Wrapper method to check the parameters of AutoContrast ops (Python and C++)."""
|
||||
|
||||
|
|
|
@ -2372,3 +2372,55 @@ TEST_F(MindDataTestPipeline, TestTrivialAugmentWideInvalidFillValue) {
|
|||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_EQ(iter, nullptr);
|
||||
}
|
||||
|
||||
/// Feature: AdjustSharpness op
|
||||
/// Description: Test AdjustSharpness pipeline
|
||||
/// Expectation: Create an ImageFolder dataset then do auto AjustSharpness on it
|
||||
TEST_F(MindDataTestPipeline, TestAdjustSharpness) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestAdjustSharpness.";
|
||||
std::string MindDataPath = "data/dataset";
|
||||
std::string folder_path = MindDataPath + "/testImageNetData/train/";
|
||||
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, std::make_shared<RandomSampler>(false, 2));
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
auto adjustsharpness_op = vision::AdjustSharpness(2.0);
|
||||
|
||||
ds = ds->Map({adjustsharpness_op});
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
auto image = row["image"];
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
EXPECT_EQ(i, 2);
|
||||
|
||||
iter->Stop();
|
||||
}
|
||||
|
||||
/// Feature: AdjustSharpness op
|
||||
/// Description: Test parameter check
|
||||
/// Expectation: Error logs are as expected
|
||||
TEST_F(MindDataTestPipeline, TestAdjustSharpnessParamCheck) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestAdjustSharpnessParamCheck.";
|
||||
std::string MindDataPath = "data/dataset";
|
||||
std::string folder_path = MindDataPath + "/testImageNetData/train/";
|
||||
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, true, std::make_shared<RandomSampler>(false, 2));
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Case 1: Negative sharpness_factor
|
||||
// Create objects for the tensor ops
|
||||
auto adjustsharpness_op = vision::AdjustSharpness(-1);
|
||||
auto ds1 = ds->Map({adjustsharpness_op});
|
||||
EXPECT_NE(ds1, nullptr);
|
||||
// Create an iterator over the result of the above dataset
|
||||
std::shared_ptr<Iterator> iter1 = ds1->CreateIterator();
|
||||
// Expect failure: invalid value of AdjustSharpness
|
||||
EXPECT_EQ(iter1, nullptr);
|
||||
}
|
||||
|
|
|
@ -2851,3 +2851,20 @@ TEST_F(MindDataTestExecute, TestAdjustBrightness) {
|
|||
Status rc = transform(image, &image);
|
||||
EXPECT_EQ(rc, Status::OK());
|
||||
}
|
||||
|
||||
/// Feature: AdjustSharpness
|
||||
/// Description: Test executing Decode then AdjustSharpness op with eager mode
|
||||
/// Expectation: The data is processed successfully
|
||||
TEST_F(MindDataTestExecute, TestAdjustSharpnessEager) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestExecute-TestAdjustSharpnessEager.";
|
||||
// Read images
|
||||
auto image = ReadFileToTensor("data/dataset/apple.jpg");
|
||||
|
||||
// Transform params
|
||||
auto decode = vision::Decode();
|
||||
auto adjust_sharpness_op = vision::AdjustSharpness(1.0);
|
||||
|
||||
auto transform = Execute({decode, adjust_sharpness_op});
|
||||
Status rc = transform(image, &image);
|
||||
EXPECT_EQ(rc, Status::OK());
|
||||
}
|
||||
|
|
|
@ -0,0 +1,157 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""
|
||||
Testing AdjustSharpness op in DE
|
||||
"""
|
||||
import numpy as np
|
||||
from numpy.testing import assert_allclose
|
||||
import PIL
|
||||
from PIL import Image, ImageEnhance
|
||||
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.transforms
|
||||
import mindspore.dataset.vision as vision
|
||||
from mindspore import log as logger
|
||||
|
||||
|
||||
DATA_DIR = "../data/dataset/testImageNetData/train/"
|
||||
MNIST_DATA_DIR = "../data/dataset/testMnistData"
|
||||
|
||||
DATA_DIR_2 = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
||||
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
||||
|
||||
IMAGE_FILE = "../data/dataset/apple.jpg"
|
||||
|
||||
|
||||
def generate_numpy_random_rgb(shape):
|
||||
"""
|
||||
Only generate floating points that are fractions like n / 256, since they
|
||||
are RGB pixels. Some low-precision floating point types in this test can't
|
||||
handle arbitrary precision floating points well.
|
||||
"""
|
||||
return np.random.randint(0, 256, shape) / 255.
|
||||
|
||||
|
||||
def test_adjust_sharpness_eager():
|
||||
"""
|
||||
Feature: AdjustSharpness op
|
||||
Description: Test eager support for AdjustSharpness C implementation
|
||||
Expectation: Output is the same as expected output
|
||||
"""
|
||||
# Eager 3-channel
|
||||
rgb_flat = generate_numpy_random_rgb((64, 3)).astype(np.uint8)
|
||||
img_in = rgb_flat.reshape((8, 8, 3))
|
||||
img_pil = Image.fromarray(img_in)
|
||||
|
||||
adjustsharpness_op = vision.AdjustSharpness(0.0)
|
||||
img_out = adjustsharpness_op(img_in)
|
||||
pil_out = ImageEnhance.Sharpness(img_pil).enhance(0)
|
||||
pil_out = np.array(pil_out)
|
||||
assert_allclose(pil_out.flatten(),
|
||||
img_out.flatten(),
|
||||
rtol=1e-5,
|
||||
atol=0)
|
||||
|
||||
img_in2 = PIL.Image.open("../data/dataset/apple.jpg").convert("RGB")
|
||||
|
||||
adjustsharpness_op2 = vision.AdjustSharpness(1.0)
|
||||
img_out2 = adjustsharpness_op2(img_in2)
|
||||
img_out2 = np.array(img_out2)
|
||||
pil_out2 = ImageEnhance.Sharpness(img_in2).enhance(1)
|
||||
pil_out2 = np.array(pil_out2)
|
||||
assert_allclose(pil_out2.flatten(),
|
||||
img_out2.flatten(),
|
||||
rtol=1e-5,
|
||||
atol=0)
|
||||
|
||||
|
||||
def test_adjust_sharpness_invalid_sharpnessfactor_param():
|
||||
"""
|
||||
Feature: AdjustSharpness op
|
||||
Description: Test AdjustSharpness Cpp implementation with invalid ignore parameter
|
||||
Expectation: Correct error is raised as expected
|
||||
"""
|
||||
logger.info("Test AdjustSharpness C implementation with invalid ignore parameter")
|
||||
try:
|
||||
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
|
||||
data_set = data_set.map(
|
||||
operations=[vision.Decode(), vision.Resize((224, 224)), lambda img: np.array(img[:, :, 0])],
|
||||
input_columns=["image"])
|
||||
# invalid alpha
|
||||
data_set = data_set.map(operations=vision.AdjustSharpness(sharpness_factor=-10.0),
|
||||
input_columns="image")
|
||||
except ValueError as error:
|
||||
logger.info("Got an exception in AdjustSharpness: {}".format(str(error)))
|
||||
assert "Input is not within the required interval of " in str(error)
|
||||
try:
|
||||
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
|
||||
data_set = data_set.map(
|
||||
operations=[vision.Decode(), vision.Resize((224, 224)), lambda img: np.array(img[:, :, 0])],
|
||||
input_columns=["image"])
|
||||
# invalid alpha
|
||||
data_set = data_set.map(operations=vision.AdjustSharpness(sharpness_factor=[1.0, 2.0]),
|
||||
input_columns="image")
|
||||
except TypeError as error:
|
||||
logger.info("Got an exception in AdjustSharpness: {}".format(str(error)))
|
||||
assert "is not of type [<class 'float'>, <class 'int'>], but got" in str(error)
|
||||
|
||||
|
||||
def test_adjust_sharpness_pipeline():
|
||||
"""
|
||||
Feature: AdjustSharpness op
|
||||
Description: Test AdjustSharpness Cpp implementation Pipeline
|
||||
Expectation: Output is the same as expected output
|
||||
"""
|
||||
# First dataset
|
||||
transforms1 = [vision.Decode(), vision.Resize([64, 64])]
|
||||
transforms1 = mindspore.dataset.transforms.transforms.Compose(
|
||||
transforms1)
|
||||
ds1 = ds.TFRecordDataset(DATA_DIR_2,
|
||||
SCHEMA_DIR,
|
||||
columns_list=["image"],
|
||||
shuffle=False)
|
||||
ds1 = ds1.map(operations=transforms1, input_columns=["image"])
|
||||
|
||||
# Second dataset
|
||||
transforms2 = [
|
||||
vision.Decode(),
|
||||
vision.Resize([64, 64]),
|
||||
vision.AdjustSharpness(1.0)
|
||||
]
|
||||
transform2 = mindspore.dataset.transforms.transforms.Compose(
|
||||
transforms2)
|
||||
ds2 = ds.TFRecordDataset(DATA_DIR_2,
|
||||
SCHEMA_DIR,
|
||||
columns_list=["image"],
|
||||
shuffle=False)
|
||||
ds2 = ds2.map(operations=transform2, input_columns=["image"])
|
||||
|
||||
num_iter = 0
|
||||
for data1, data2 in zip(ds1.create_dict_iterator(num_epochs=1),
|
||||
ds2.create_dict_iterator(num_epochs=1)):
|
||||
num_iter += 1
|
||||
ori_img = data1["image"].asnumpy()
|
||||
cvt_img = data2["image"].asnumpy()
|
||||
assert_allclose(ori_img.flatten(),
|
||||
cvt_img.flatten(),
|
||||
rtol=1e-5,
|
||||
atol=0)
|
||||
assert ori_img.shape == cvt_img.shape
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_adjust_sharpness_eager()
|
||||
test_adjust_sharpness_invalid_sharpnessfactor_param()
|
||||
test_adjust_sharpness_pipeline()
|
Loading…
Reference in New Issue