diff --git a/mindspore/ccsrc/pipeline/jit/pipeline.cc b/mindspore/ccsrc/pipeline/jit/pipeline.cc index d2dfe38ec94..2c9ddb46c75 100644 --- a/mindspore/ccsrc/pipeline/jit/pipeline.cc +++ b/mindspore/ccsrc/pipeline/jit/pipeline.cc @@ -136,18 +136,6 @@ bool CheckArgValid(const py::handle &arg) { (py::isinstance(arg) && !py::hasattr(arg, "__parameter__")); } -void CheckArgsValid(const py::tuple &args) { - for (size_t i = 0; i < args.size(); i++) { - if (!CheckArgValid(args[i])) { - MS_EXCEPTION(TypeError) - << "The inputs types of the outermost network support bool, int, float, tensor, " - "mstype.Number(mstype.bool, mstype.int, mstype.float, mstype.uint), " - "and tuple or list containing only these types, and dict whose values are these types, but got " - << i << "th arg is " << py::str(args[i]); - } - } -} - std::string GetCompileExceptionInfo() { std::ostringstream oss; trace::TraceGraphEval(); @@ -236,6 +224,18 @@ void CacheFuncGraph(const ResourcePtr &resource) { } } // namespace +void CheckArgsValid(const py::tuple &args) { + for (size_t i = 0; i < args.size(); i++) { + if (!CheckArgValid(args[i])) { + MS_EXCEPTION(TypeError) + << "The inputs types of the outermost network support bool, int, float, tensor, " + "mstype.Number(mstype.bool, mstype.int, mstype.float, mstype.uint), " + "and tuple or list containing only these types, and dict whose values are these types, but got " + << i << "th arg is " << py::str(args[i]); + } + } +} + py::tuple GenerateKey(const std::string &name, const std::unordered_map &defaults) { MS_LOG(DEBUG) << "GenerateKey args size:" << defaults.size(); abstract::AbstractBasePtrList args_spec; diff --git a/mindspore/ccsrc/pipeline/jit/pipeline.h b/mindspore/ccsrc/pipeline/jit/pipeline.h index 64a34a095b7..4084320d4c7 100644 --- a/mindspore/ccsrc/pipeline/jit/pipeline.h +++ b/mindspore/ccsrc/pipeline/jit/pipeline.h @@ -130,6 +130,7 @@ class ExecutorPy : public std::enable_shared_from_this { }; using ExecutorPyPtr = std::shared_ptr; +void CheckArgsValid(const py::tuple &args); // Generate a key for mapping function graph py::tuple GenerateKey(const std::string &name, const std::unordered_map &defaults); py::bool_ VerifyInputSignature(const py::list &input_signature, const py::tuple &inputs); @@ -162,7 +163,6 @@ void ProcessVmArgInner(const py::tuple &args, const ResourcePtr &res, VectorRef py::bytes PyEncrypt(char *plain_data, const size_t plain_len, char *key, const size_t key_len, std::string enc_mode); py::bytes PyDecrypt(std::string encrypt_data_path, char *key, const size_t key_len, std::string dec_mode); bool PyIsCipherFile(const std::string &file_path); - } // namespace pipeline } // namespace mindspore diff --git a/mindspore/ccsrc/pipeline/pynative/pynative_execute.cc b/mindspore/ccsrc/pipeline/pynative/pynative_execute.cc index d36d3e6902c..07eff4aa2ba 100644 --- a/mindspore/ccsrc/pipeline/pynative/pynative_execute.cc +++ b/mindspore/ccsrc/pipeline/pynative/pynative_execute.cc @@ -345,6 +345,24 @@ std::string GetSingleOpGraphInfo(const OpExecInfoPtr &op_exec_info, const std::v return graph_info; } +py::args FilterTensorArgs(const py::args &args, bool has_sens = false) { + size_t size = args.size(); + if (size == 0 && has_sens) { + MS_LOG(EXCEPTION) << "The size of args is 0, when the flag of sens is set to True"; + } + py::list only_tensors; + size_t forward_args_size = has_sens ? size - 1 : size; + for (size_t i = 0; i < forward_args_size; ++i) { + if (py::isinstance(args[i])) { + only_tensors.append(args[i]); + } + } + if (has_sens) { + only_tensors.append(args[forward_args_size]); + } + return only_tensors; +} + bool RunOpConvertConstInputToAttr(const py::object &input_object, size_t input_index, const PrimitivePtr &op_prim, const std::unordered_set &input_attrs) { MS_EXCEPTION_IF_NULL(op_prim); @@ -1913,50 +1931,63 @@ pipeline::ResourcePtr GradExecutor::GetResource(const std::string &cell_id) { return nullptr; } +void GradExecutor::HandleInputArgsForTopCell(const py::args &args, bool is_bprop_top) { + if (is_bprop_top) { + // Convert input args to parameters for top cell graph in bprop. + for (size_t i = 0; i < args.size(); ++i) { + auto param = args[i]; + auto new_param = curr_g_->add_parameter(); + std::string param_id = GetId(param); + SetTupleArgsToGraphInfoMap(curr_g_, param, new_param, true); + SetNodeMapInGraphInfoMap(curr_g_, param_id, new_param); + SetParamNodeMapInGraphInfoMap(curr_g_, param_id, new_param); + } + return; + } + // Convert input args to parameters for top cell graph in construct. + std::vector input_param_values; + py::args only_tensors = FilterTensorArgs(args); + for (size_t i = 0; i < only_tensors.size(); ++i) { + auto new_param = curr_g_->add_parameter(); + auto param_i = only_tensors[i]; + ValuePtr param_i_value = PyAttrValue(param_i); + MS_EXCEPTION_IF_NULL(param_i_value); + input_param_values.emplace_back(param_i_value); + auto param_i_abs = param_i_value->ToAbstract(); + MS_EXCEPTION_IF_NULL(param_i_abs); + new_param->set_abstract(param_i_abs->Broaden()); + std::string param_i_id = GetId(param_i); + SetTupleArgsToGraphInfoMap(curr_g_, param_i, new_param, true); + SetNodeMapInGraphInfoMap(curr_g_, param_i_id, new_param); + SetParamNodeMapInGraphInfoMap(curr_g_, param_i_id, new_param); + } + top_cell()->set_k_pynative_cell_ptr(ad::GradPynativeCellBegin(curr_g_->parameters(), input_param_values)); +} + void GradExecutor::InitResourceAndDfBuilder(const std::string &cell_id, const py::args &args) { - auto bprop_fn = [this, &cell_id, &args]() { - if (IsBpropGraph(cell_id)) { + if (cell_stack_.empty() || IsNestedGrad()) { + if (cell_stack_.empty() && !grad_is_running_) { + MS_LOG(DEBUG) << "Make new topest graph"; + MakeNewTopGraph(cell_id, args, true); + } else if (grad_is_running_ && IsBpropGraph(cell_id)) { MS_LOG(DEBUG) << "Run bprop cell"; curr_g_ = std::make_shared(); auto graph_info_cg = std::make_shared(cell_id); top_cell()->graph_info_map()[curr_g_] = graph_info_cg; - for (size_t i = 0; i < args.size(); ++i) { - auto param = args[i]; - auto new_param = curr_g_->add_parameter(); - std::string param_id = GetId(param); - SetTupleArgsToGraphInfoMap(curr_g_, param, new_param, true); - SetNodeMapInGraphInfoMap(curr_g_, param_id, new_param); - SetParamNodeMapInGraphInfoMap(curr_g_, param_id, new_param); - } + HandleInputArgsForTopCell(args, true); bprop_grad_stack_.push(std::make_pair(cell_id, false)); - } else if (top_cell()->grad_order() != grad_order_) { + } else if (grad_is_running_ && top_cell()->grad_order() != grad_order_) { + MS_LOG(DEBUG) << "Nested grad graph existed in bprop"; MakeNewTopGraph(cell_id, args, false); bprop_grad_stack_.push(std::make_pair(cell_id, true)); - } - }; - - if (cell_stack_.empty()) { - if (grad_is_running_) { - bprop_fn(); - } else { - MakeNewTopGraph(cell_id, args, true); - } - } else { - // High order - if (IsNestedGrad()) { - if (grad_is_running_) { - bprop_fn(); - } else if (top_cell()->grad_order() != grad_order_) { - MS_LOG(DEBUG) << "Enter nested graph"; - auto cur_top_is_dynamic = top_cell()->is_dynamic(); - MakeNewTopGraph(cell_id, args, false); - // If outer is dynamic, inner set dynamic too - if (cur_top_is_dynamic) { - top_cell()->set_is_dynamic(cur_top_is_dynamic); - } - } + } else if (!cell_stack_.empty() && IsNestedGrad() && top_cell()->grad_order() != grad_order_) { + MS_LOG(DEBUG) << "Nested grad graph existed in construct"; + auto cur_top_is_dynamic = top_cell()->is_dynamic(); + MakeNewTopGraph(cell_id, args, false); + top_cell()->set_is_dynamic(cur_top_is_dynamic); } } + PushCellStack(cell_id); // Init kPynativeCellPtr with input parameters of top cell if (!top_cell()->is_init_kpynative()) { @@ -1965,23 +1996,7 @@ void GradExecutor::InitResourceAndDfBuilder(const std::string &cell_id, const py auto df_builder = GetDfbuilder(cell_id); auto graph_info_df = std::make_shared(cell_id); top_cell()->graph_info_map()[df_builder] = graph_info_df; - // Init parameter info for make cnode and curr_g - std::vector input_param_values; - for (size_t i = 0; i < args.size(); ++i) { - auto new_param = curr_g_->add_parameter(); - auto param_i = args[i]; - ValuePtr param_i_value = PyAttrValue(param_i); - MS_EXCEPTION_IF_NULL(param_i_value); - input_param_values.emplace_back(param_i_value); - auto param_i_abs = param_i_value->ToAbstract(); - MS_EXCEPTION_IF_NULL(param_i_abs); - new_param->set_abstract(param_i_abs->Broaden()); - std::string param_i_id = GetId(param_i); - SetTupleArgsToGraphInfoMap(curr_g_, param_i, new_param, true); - SetNodeMapInGraphInfoMap(curr_g_, param_i_id, new_param); - SetParamNodeMapInGraphInfoMap(curr_g_, param_i_id, new_param); - } - top_cell()->set_k_pynative_cell_ptr(ad::GradPynativeCellBegin(curr_g_->parameters(), input_param_values)); + HandleInputArgsForTopCell(args, false); top_cell()->set_need_compile_graph(true); top_cell()->set_init_kpynative(true); } else { @@ -2011,12 +2026,11 @@ void GradExecutor::NewGraphInner(py::object *ret, const py::object &cell, const return; } } - // When the cell has custom bprop, in_custom_bprop_cell is lager than 0 if (py::hasattr(cell, parse::CUSTOM_BPROP_NAME)) { custom_bprop_cell_count_ += 1; } - // Init resource for resource and df_builder + // Make top graph and init resource for resource and df_builder InitResourceAndDfBuilder(cell_id, args); // Check whether cell has dynamic construct if (!top_cell()->is_dynamic()) { @@ -2029,26 +2043,18 @@ void GradExecutor::NewGraphInner(py::object *ret, const py::object &cell, const } void GradExecutor::MakeNewTopGraph(const string &cell_id, const py::args &args, bool is_topest) { - for (const auto &arg : args) { - if (py::isinstance(arg)) { - auto tensor = arg.cast(); - if (tensor && tensor->is_parameter()) { - MS_EXCEPTION(TypeError) << "The inputs could not be Parameter."; - } - } - } - + pipeline::CheckArgsValid(args); + // Record input args info std::string input_args_id; for (size_t i = 0; i < args.size(); ++i) { input_args_id += GetId(args[i]) + "_"; } - // Run forward first need plus 1 if (grad_order_ == 0) { ++grad_order_; } + // Create top cell curr_g_ = std::make_shared(); - // Init resource for new top cell auto df_builder = std::make_shared(); auto resource = std::make_shared(); auto top_cell = std::make_shared(is_topest, grad_order_, resource, df_builder, cell_id); @@ -2166,25 +2172,20 @@ void GradExecutor::EndGraphInner(py::object *ret, const py::object &cell, const MakeValueNode(out, out_id); } } - DoGradForCustomBprop(cell, out, args); + // Set output node for forward graph when need. PopCellStack(); - auto set_fg_fn = [this, &out, &out_id]() { - AnfNodePtr output_node = GetObjNode(out, out_id); - MS_EXCEPTION_IF_NULL(output_node); - curr_g_->set_output(output_node); - }; if (grad_is_running_) { if (!bprop_grad_stack_.top().second) { bprop_grad_stack_.pop(); - set_fg_fn(); + curr_g_->set_output(GetObjNode(out, out_id)); return; } else if (bprop_grad_stack_.top().first == cell_id) { bprop_grad_stack_.pop(); } } if (MsContext::GetInstance()->get_param(MS_CTX_SAVE_GRAPHS_FLAG)) { - set_fg_fn(); + curr_g_->set_output(GetObjNode(out, out_id)); DumpIR("fg.ir", curr_g_); } // Reset grad flag and update output node of top cell @@ -2440,7 +2441,7 @@ FuncGraphPtr GradExecutor::GetBpropGraph(const prim::GradOperationPtr &grad, con bprop_graph->set_flag(FUNC_GRAPH_FLAG_CORE, true); bprop_graph->debug_info()->set_name(ss.str()); // Get the parameters items and add the value to args_spec - (void)GetArgsSpec(args, bprop_graph); + (void)GetArgsSpec(FilterTensorArgs(args, grad->sens_param_), bprop_graph); // Do opt for final bprop graph pipeline::ResourcePtr resource = std::make_shared(); @@ -2552,7 +2553,7 @@ void GradExecutor::RunGradGraph(py::object *ret, const py::object &cell, const p MS_LOG(DEBUG) << "Run resource ptr " << resource.get(); VectorRef arg_list; - py::tuple converted_args = ConvertArgs(args); + py::tuple converted_args = ConvertArgs(FilterTensorArgs(args, has_sens)); pipeline::ProcessVmArgInner(converted_args, resource, &arg_list); if (resource->results().find(pipeline::kOutput) == resource->results().end()) { MS_LOG(EXCEPTION) << "Can't find run graph output"; diff --git a/mindspore/ccsrc/pipeline/pynative/pynative_execute.h b/mindspore/ccsrc/pipeline/pynative/pynative_execute.h index 3624d08c8db..a7adc12d0fa 100644 --- a/mindspore/ccsrc/pipeline/pynative/pynative_execute.h +++ b/mindspore/ccsrc/pipeline/pynative/pynative_execute.h @@ -202,7 +202,6 @@ class GradExecutor { private: ForwardExecutorPtr forward() const; - // Higher derivative bool IsNestedGrad() const; void SwitchTopcell(); @@ -213,17 +212,20 @@ class GradExecutor { void PopCellStack(); void PushHighOrderGraphStack(const TopCellInfoPtr &top_cell); TopCellInfoPtr PopHighOrderGraphStack(); - + // Manage information of top cell. FuncGraphPtr GetDfbuilder(const std::string &cell_id = ""); pipeline::ResourcePtr GetResource(const std::string &cell_id = ""); - bool IsCellObjIdEq(const std::string &l_cell_id, const std::string &r_cell_id); - bool IsBpropGraph(const std::string &cell_id); - void UpdateTopCellInfo(bool forward_already_run, bool need_compile_graph, bool vm_compiled); - void DumpGraphIR(const std::string &filename, const FuncGraphPtr &graph); + void HandleInputArgsForTopCell(const py::args &args, bool is_bprop_top); void InitResourceAndDfBuilder(const std::string &cell_id, const py::args &args); - void NewGraphInner(py::object *ret, const py::object &cell, const py::args &args); void MakeNewTopGraph(const string &cell_id, const py::args &args, bool is_topest); + void UpdateTopCellInfo(bool forward_already_run, bool need_compile_graph, bool vm_compiled); + // Manage resource when run grad process. + bool IsBpropGraph(const std::string &cell_id); + bool IsCellObjIdEq(const std::string &l_cell_id, const std::string &r_cell_id); + void DumpGraphIR(const std::string &filename, const FuncGraphPtr &graph); + void NewGraphInner(py::object *ret, const py::object &cell, const py::args &args); void EndGraphInner(py::object *ret, const py::object &cell, const py::object &out, const py::args &args); + void DoGradForCustomBprop(const py::object &cell, const py::object &out, const py::args &args); std::string GetGradCellId(bool has_sens, const py::object &cell, const py::args &args, py::args *forward_args = nullptr); void GradNetInner(py::object *ret, const prim::GradOperationPtr &grad, const py::object &cell, @@ -232,11 +234,12 @@ class GradExecutor { const std::vector &weights, size_t arg_size, const py::args &args); std::vector GetWeightsArgs(const py::object &weights, const FuncGraphPtr &df_builder); abstract::AbstractBasePtrList GetArgsSpec(const py::args &args, const FuncGraphPtr &bprop_graph); - void SetTupleItemArgsToGraphInfoMap(const FuncGraphPtr &g, const py::object &id, const AnfNodePtr &node, - const std::vector &index_sequence, bool is_param = false); + // Manage resource for construct forward graph. + std::string &graph_phase() { return graph_phase_; } AnfNodePtr GetObjNode(const py::object &obj, const std::string &obj_id); AnfNodePtr MakeValueNode(const py::object &obj, const std::string &obj_id); - std::string &graph_phase() { return graph_phase_; } + void SetTupleItemArgsToGraphInfoMap(const FuncGraphPtr &g, const py::object &id, const AnfNodePtr &node, + const std::vector &index_sequence, bool is_param = false); void SetTupleArgsToGraphInfoMap(const FuncGraphPtr &g, const py::object &args, const AnfNodePtr &node, bool is_param = false); void SetParamNodeMapInGraphInfoMap(const FuncGraphPtr &g, const std::string &id, const ParameterPtr ¶m) { @@ -252,7 +255,6 @@ class GradExecutor { } void CreateMakeTupleNodeForMultiOut(const std::string &cell_id, const FuncGraphPtr &curr_g, const py::object &out, const std::string &out_id); - void DoGradForCustomBprop(const py::object &cell, const py::object &out, const py::args &args); private: bool grad_flag_{false}; diff --git a/mindspore/core/ir/func_graph_extends.cc b/mindspore/core/ir/func_graph_extends.cc index cb583ede3b9..e5af59d6999 100644 --- a/mindspore/core/ir/func_graph_extends.cc +++ b/mindspore/core/ir/func_graph_extends.cc @@ -56,6 +56,7 @@ AbstractFunctionPtr FuncGraph::abstract() { } void FuncGraph::set_output(const AnfNodePtr &value, bool force_new_ret) { + MS_EXCEPTION_IF_NULL(value); if (force_new_ret || return_ == nullptr) { std::vector params({NewValueNode(prim::kPrimReturn), value}); FuncGraphPtr this_graph = shared_from_base(); diff --git a/mindspore/ops/composite/base.py b/mindspore/ops/composite/base.py index 476eafaeb09..adf6ef280fc 100644 --- a/mindspore/ops/composite/base.py +++ b/mindspore/ops/composite/base.py @@ -25,7 +25,6 @@ from ..._c_expression import EnvInstance_, GradOperation_, HyperMap_, Map_, Mult from ...common import dtype as mstype from ...common.api import ms_function, _pynative_exec, _wrap_func from .. import functional as F -from ...common.tensor import Tensor from .. import signature as sig __all__ = [EnvInstance_, TupleAdd_, TupleSlice_, UnpackCall_, TupleGetItemTensor_] @@ -339,9 +338,6 @@ class GradOperation(GradOperation_): else: new_kwargs = kwargs.copy() new_kwargs.pop('sens') - for arg in args: - if not isinstance(arg, Tensor): - raise TypeError("grad inputs should be tensor in pynative mode") if isinstance(fn, FunctionType): if not _pynative_exec.check_run(fn, *args, **new_kwargs): _pynative_exec.set_grad_flag(True)