!46021 modify the format of files 1125

Merge pull request !46021 from 宦晓玲/code_docs_1125
This commit is contained in:
i-robot 2022-11-25 07:59:53 +00:00 committed by Gitee
commit ef247fb7cc
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
10 changed files with 23 additions and 22 deletions

View File

@ -52,7 +52,7 @@
- **TypeError** - 如果参数 `stride` 或者 `dilation` 不是一个整数或者包含两个整数的元组或者包含四个整数的元组。
- **ValueError** - 如果参数 `stride` 或者 `dilation` 是一个元组并且它的长度不是2或者4。
- **ValueError** - 如果参数 `stride` 或者 `dilation` 是一个包含四个整数的元组它的shape不是 `(1, 1, height, width)`
- **ValueError** - 如果参数 `stride` 的取值范围不是`[1, 255]`
- **ValueError** - 如果参数 `stride` 的取值范围不是 `[1, 255]`
- **ValueError** - 如果参数 `dilation` 的值小于1。
- **ValueError** - 如果参数 `pad_mode` 不是 `same``valid``SAME` 或者 `VALID`
- **ValueError** - 如果参数 `data_format` 不是字符串`NCHW`

View File

@ -28,5 +28,6 @@ mindspore.ops.PadV3
- **ValueError** - `mode` 是"edge"或"reflect" `x` 的维度是4 `paddings` 元素个数是4。
- **ValueError** - `mode` 是"edge"或"reflect"的同时 `x` 的维度小于3。
- **ValueError** - `mode` 是"edge"的同时 `x` 的维度大于5。
- **ValueError** - `mode` 是"reflect"的同时 `x` 的维度大于4。
- **ValueError** - `mode` 是"reflect"的同时填充值大于对应 `x` 的维度。
- **ValueError** - 填充之后输出shape数不大于零。

View File

@ -13,5 +13,5 @@ mindspore.ops.angle
Tensor类型为float32或float64shape与输入相同。
异常:
TypeError如果 `x` 不是Tensor。
TypeError如果输入的数据类型不是complex64或complex128。
- **TypeError** - 如果 `x` 不是Tensor。
- **TypeError** - 如果输入的数据类型不是complex64或complex128。

View File

@ -3,7 +3,7 @@ mindspore.ops.nan_to_num
.. py:function:: mindspore.ops.nan_to_num(x, nan=0.0, posinf=None, neginf=None)
`x` 中的`NaN`、正无穷大和负无穷大值分别替换为 `nan`, `posinf`, 和 `neginf` 指定的值。默认情况下NaN替换为0正无穷替换为 `x` 类型支持的上限,负无穷替换为由 `x` 类型支持的下限。
`x` 中的 `NaN` 、正无穷大和负无穷大值分别替换为 `nan`, `posinf`, 和 `neginf` 指定的值。默认情况下NaN替换为0正无穷替换为 `x` 类型支持的上限,负无穷替换为由 `x` 类型支持的下限。
参数:
- **x** (Tensor) - shape为 :math:`(x_1, x_2, ..., x_R)` 的tensor。类型必须为float32或float16。

View File

@ -37,7 +37,7 @@ def print_(*input_x):
`Summary <https://www.mindspore.cn/mindinsight/docs/en/master/summary_record.html?highlight=summary#>`_.
Args:
input_x (Union[Tensor, bool, int, float, str]): The inputs of print_.
input_x (Union[Tensor, bool, int, float, str, tuple, list]): The inputs of print_.
Supports multiple inputs which are separated by ','.
Returns:

View File

@ -441,9 +441,6 @@ class Im2Col(Primitive):
Outputs:
Tensor, a 4-D Tensor with same type of input `x`.
Supported Platforms:
``Ascend`` ``CPU``
Raises:
TypeError: If `ksizes` data type is not in Union[int, tuple[int], list[int]].
TypeError: If `strides` data type is not in Union[int, tuple[int], list[int]].
@ -457,6 +454,9 @@ class Im2Col(Primitive):
ValueError: If `padding_mode` value is not in ["SAME", "VALID", "CALCULATED"].
ValueError: If `pads` value is not greater than zero.
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> x = Tensor(input_data=np.random.rand(4, 4, 32, 32), dtype=mstype.float64)
>>> im2col = P.Im2Col(ksizes=3, strides=1, dilations=1)
@ -555,9 +555,6 @@ class Col2Im(Primitive):
Outputs:
Tensor, a 4-D Tensor with same type of input `x`.
Supported Platforms:
``CPU``
Raises:
TypeError: If :attr:`kernel_size` data type is not in Union[int, tuple[int], list[int]].
TypeError: If :attr:`dilation` data type is not in Union[int, tuple[int], list[int]].
@ -570,6 +567,9 @@ class Col2Im(Primitive):
ValueError: If x.shape[2] != kernel_size[0] * kernel_size[1].
ValueError: If x.shape[3] does not match the calculated number of sliding blocks.
Supported Platforms:
``CPU``
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
@ -7451,7 +7451,7 @@ class FillDiagonal(Primitive):
Args:
fill_value (float): The fill value.
wrap (bool): the diagonal wrapped after N columns for tall matrices. Default: False.
wrap (bool, optional): the diagonal wrapped after N columns for tall matrices. Default: False.
Inputs:
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.

View File

@ -184,15 +184,15 @@ class ExtractGlimpse(Primitive):
If the window and input image tensor not overlap, random noise is filled.
Args:
centered (bool): An optional `bool`. Indicates if the offset coordinates
centered (bool, optional): An optional `bool`. Indicates if the offset coordinates
are centered relative to the image, in which case the (0, 0) offset is relative to the center of
the center of the input images. If false, the (0, 0) offset corresponds to the upper left corner
of the input images. Defaults to `True`.
normalized (bool): An optional `bool`. indicates if the offset
normalized (bool, optional): An optional `bool`. indicates if the offset
coordinates are normalized. Defaults to `True`.
uniform_noise (bool): An optional `bool`. indicates if the noise should be
uniform_noise (bool, optional): An optional `bool`. indicates if the noise should be
generated using a uniform distribution or a Gaussian distribution. Defaults to `True`.
noise (str): An optional string. The value can be 'uniform', 'gaussian'
noise (str, optional): An optional string. The value can be 'uniform', 'gaussian'
and 'zero'. The window is determined by size and offsets.
When the window and input image tensor not overlap, random noise is filled.
The result is variable when noise is equal to 'uniform' and 'gaussian'.
@ -352,7 +352,7 @@ class CropAndResize(Primitive):
class NonMaxSuppressionV3(Primitive):
r"""
Greedily selects a subset of bounding boxes in descending order of score.
Greedily selects a subset of bounding boxes in descending order of score.
.. warning::
When input `max_output_size` is negative, it will be treated as 0.
@ -384,7 +384,7 @@ class NonMaxSuppressionV3(Primitive):
TypeError: If the dtype of `boxes` and `scores` are different.
TypeError: If the dtype of `iou_threshold` and `score_threshold` are different.
TypeError: If `boxes` is not tensor or its dtype is not float16 or float32.
TypeEroor: If `scores` is not tensor or its dtype is not float16 or float32.
TypeError: If `scores` is not tensor or its dtype is not float16 or float32.
TypeError: If `max_output_size` is not tensor or scalar or its date type is not int32 or int64.
TypeError: If `iou_threshold` is not tensor or scalar or its type is neither float16 or float32.
TypeError: If `score_threshold` is not tensor or scalar or its type is neither float16 or float32.

View File

@ -542,7 +542,7 @@ class EuclideanNorm(Primitive):
Reduces input along the dimensions given in axis.
Args:
keep_dims (bool): If true, the reduceed dimensions are retained with length 1.
keep_dims (bool, optional): If true, the reduceed dimensions are retained with length 1.
If false, don't keep these dimensions. Default: False.
Inputs:

View File

@ -9134,7 +9134,7 @@ class FractionalMaxPool3DWithFixedKsize(Primitive):
output_shape can be a tuple, or a single H for H x H x H.
specifying the size (D, H, W) of the output tensor.
data_format (str) : The optional value for data format.
data_format (str, optional) : The optional value for data format.
Currently support 'NCDHW' and 'NHDWC'. Default: 'NCDHW'.
Inputs:
@ -10198,7 +10198,7 @@ class FractionalMaxPoolWithFixedKsize(Primitive):
output_shape (Union[int, tuple[int]]): The target output size is H x W.
output_shape can be a tuple, or a single H for H x H.
specifying the size (H, W) of the output tensor.
data_format (str): The optional value for data format, is 'NCHW'.
data_format (str, optional): The optional value for data format, is 'NCHW'.
Default: "NCHW".
Inputs:

View File

@ -86,7 +86,7 @@ class TruncatedNormal(Primitive):
seed (int, optional): An optional int. Defaults to 0. If either `seed` or `seed2` are set to be non-zero,
the seed is set by the given seed. Otherwise, it is seeded by a random seed.
seed2 (int, optional): An optional int. Defaults to 0. A second seed to avoid seed collision.
dtype (mindspore.dtype): Specified output data type. Must be one of the following types:
dtype (mindspore.dtype, optional): Specified output data type. Must be one of the following types:
mindspore.float16, mindspore.float32 and mindspore.float64. Default: mindspore.float32.
Inputs: