change binary to mindir
This commit is contained in:
parent
eb84ae4593
commit
eea597c92a
|
@ -68,7 +68,7 @@ using mindspore::abstract::AbstractTuplePtr;
|
|||
|
||||
const char IR_TYPE_ANF[] = "anf_ir";
|
||||
const char IR_TYPE_ONNX[] = "onnx_ir";
|
||||
const char IR_TYPE_BINARY[] = "binary_ir";
|
||||
const char IR_TYPE_MINDIR[] = "mind_ir";
|
||||
|
||||
ExecutorPyPtr ExecutorPy::executor_ = nullptr;
|
||||
std::mutex ExecutorPy::instance_lock_;
|
||||
|
@ -222,7 +222,7 @@ py::bytes ExecutorPy::GetFuncGraphProto(const std::string &phase, const std::str
|
|||
return proto_str;
|
||||
}
|
||||
|
||||
if (ir_type == IR_TYPE_BINARY) {
|
||||
if (ir_type == IR_TYPE_MINDIR) {
|
||||
std::string proto_str = GetBinaryProtoString(fg_ptr);
|
||||
if (proto_str.empty()) {
|
||||
MS_LOG(EXCEPTION) << "Graph proto is empty.";
|
||||
|
|
|
@ -445,15 +445,17 @@ def export(network, *inputs, file_name, mean=127.5, std_dev=127.5, file_format='
|
|||
file_name (str): File name of model to export.
|
||||
mean (int): Input data mean. Default: 127.5.
|
||||
std_dev (int, float): Input data variance. Default: 127.5.
|
||||
file_format (str): MindSpore currently supports 'GEIR', 'ONNX' and 'BINARY' format for exported
|
||||
file_format (str): MindSpore currently supports 'GEIR', 'ONNX' and 'MINDIR' format for exported
|
||||
quantization aware model. Default: 'GEIR'.
|
||||
|
||||
- GEIR: Graph Engine Intermidiate Representation. An intermidiate representation format of
|
||||
Ascend model.
|
||||
- BINARY: Binary format for model. An intermidiate representation format for models.
|
||||
- MINDIR: MindSpore Native Intermidiate Representation for Anf. An intermidiate representation format
|
||||
for MindSpore models.
|
||||
Recommended suffix for output file is '.mindir'.
|
||||
"""
|
||||
supported_device = ["Ascend", "GPU"]
|
||||
supported_formats = ['GEIR', 'BINARY']
|
||||
supported_formats = ['GEIR', 'MINDIR']
|
||||
|
||||
mean = validator.check_type("mean", mean, (int, float))
|
||||
std_dev = validator.check_type("std_dev", std_dev, (int, float))
|
||||
|
|
|
@ -453,17 +453,19 @@ def export(net, *inputs, file_name, file_format='GEIR'):
|
|||
net (Cell): MindSpore network.
|
||||
inputs (Tensor): Inputs of the `net`.
|
||||
file_name (str): File name of model to export.
|
||||
file_format (str): MindSpore currently supports 'GEIR', 'ONNX' and 'BINARY' format for exported model.
|
||||
file_format (str): MindSpore currently supports 'GEIR', 'ONNX' and 'MINDIR' format for exported model.
|
||||
|
||||
- GEIR: Graph Engine Intermidiate Representation. An intermidiate representation format of
|
||||
Ascend model.
|
||||
- ONNX: Open Neural Network eXchange. An open format built to represent machine learning models.
|
||||
- BINARY: Binary format for model. An intermidiate representation format for models.
|
||||
- MINDIR: MindSpore Native Intermidiate Representation for Anf. An intermidiate representation format
|
||||
for MindSpore models.
|
||||
Recommended suffix for output file is '.mindir'.
|
||||
"""
|
||||
logger.info("exporting model file:%s format:%s.", file_name, file_format)
|
||||
check_input_data(*inputs, data_class=Tensor)
|
||||
|
||||
supported_formats = ['GEIR', 'ONNX', 'BINARY']
|
||||
supported_formats = ['GEIR', 'ONNX', 'MINDIR']
|
||||
if file_format not in supported_formats:
|
||||
raise ValueError(f'Illegal file format {file_format}, it must be one of {supported_formats}')
|
||||
# switch network mode to infer when it is training
|
||||
|
@ -485,10 +487,10 @@ def export(net, *inputs, file_name, file_format='GEIR'):
|
|||
with open(file_name, 'wb') as f:
|
||||
os.chmod(file_name, stat.S_IWUSR | stat.S_IRUSR)
|
||||
f.write(onnx_stream)
|
||||
elif file_format == 'BINARY': # file_format is 'BINARY'
|
||||
phase_name = 'export.binary'
|
||||
elif file_format == 'MINDIR': # file_format is 'MINDIR'
|
||||
phase_name = 'export.mindir'
|
||||
graph_id, _ = _executor.compile(net, *inputs, phase=phase_name, do_convert=False)
|
||||
onnx_stream = _executor._get_func_graph_proto(graph_id, 'binary_ir')
|
||||
onnx_stream = _executor._get_func_graph_proto(graph_id, 'mind_ir')
|
||||
with open(file_name, 'wb') as f:
|
||||
os.chmod(file_name, stat.S_IWUSR | stat.S_IRUSR)
|
||||
f.write(onnx_stream)
|
||||
|
|
|
@ -36,7 +36,7 @@ y = np.ones(4).astype(np.float32)
|
|||
def export_net():
|
||||
add = Net()
|
||||
output = add(Tensor(x), Tensor(y))
|
||||
export(add, Tensor(x), Tensor(y), file_name='tensor_add.pb', file_format='BINARY')
|
||||
export(add, Tensor(x), Tensor(y), file_name='tensor_add.pb', file_format='MINDIR')
|
||||
print(x)
|
||||
print(y)
|
||||
print(output.asnumpy())
|
||||
|
|
|
@ -62,14 +62,14 @@ def export_add_model():
|
|||
net = AddNet()
|
||||
x = np.ones(4).astype(np.float32)
|
||||
y = np.ones(4).astype(np.float32)
|
||||
export(net, Tensor(x), Tensor(y), file_name='add.pb', file_format='BINARY')
|
||||
export(net, Tensor(x), Tensor(y), file_name='add.pb', file_format='MINDIR')
|
||||
|
||||
def export_bert_model():
|
||||
net = BertModel(bert_net_cfg, False)
|
||||
input_ids = np.random.randint(0, 1000, size=(2, 32), dtype=np.int32)
|
||||
segment_ids = np.zeros((2, 32), dtype=np.int32)
|
||||
input_mask = np.zeros((2, 32), dtype=np.int32)
|
||||
export(net, Tensor(input_ids), Tensor(segment_ids), Tensor(input_mask), file_name='bert.pb', file_format='BINARY')
|
||||
export(net, Tensor(input_ids), Tensor(segment_ids), Tensor(input_mask), file_name='bert.pb', file_format='MINDIR')
|
||||
|
||||
if __name__ == '__main__':
|
||||
export_add_model()
|
||||
|
|
|
@ -322,10 +322,10 @@ def test_export():
|
|||
|
||||
|
||||
@non_graph_engine
|
||||
def test_binary_export():
|
||||
def test_mindir_export():
|
||||
net = MYNET()
|
||||
input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]).astype(np.float32))
|
||||
export(net, input_data, file_name="./me_binary_export.pb", file_format="BINARY")
|
||||
export(net, input_data, file_name="./me_binary_export.mindir", file_format="MINDIR")
|
||||
|
||||
|
||||
class PrintNet(nn.Cell):
|
||||
|
|
Loading…
Reference in New Issue