!1632 modify ssd script for merging backbone

Merge pull request !1632 from chengxb7532/master
This commit is contained in:
mindspore-ci-bot 2020-05-29 15:07:03 +08:00 committed by Gitee
commit edbdb507d5
1 changed files with 133 additions and 13 deletions

View File

@ -24,7 +24,8 @@ from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore.ops import composite as C
from mindspore.common.initializer import initializer
from .mobilenet import InvertedResidual, ConvBNReLU
from mindspore.ops.operations import TensorAdd
from mindspore import Parameter
def _conv2d(in_channel, out_channel, kernel_size=3, stride=1, pad_mod='same'):
@ -45,6 +46,129 @@ def _make_divisible(v, divisor, min_value=None):
return new_v
class DepthwiseConv(nn.Cell):
"""
Depthwise Convolution warpper definition.
Args:
in_planes (int): Input channel.
kernel_size (int): Input kernel size.
stride (int): Stride size.
pad_mode (str): pad mode in (pad, same, valid)
channel_multiplier (int): Output channel multiplier
has_bias (bool): has bias or not
Returns:
Tensor, output tensor.
Examples:
>>> DepthwiseConv(16, 3, 1, 'pad', 1, channel_multiplier=1)
"""
def __init__(self, in_planes, kernel_size, stride, pad_mode, pad, channel_multiplier=1, has_bias=False):
super(DepthwiseConv, self).__init__()
self.has_bias = has_bias
self.in_channels = in_planes
self.channel_multiplier = channel_multiplier
self.out_channels = in_planes * channel_multiplier
self.kernel_size = (kernel_size, kernel_size)
self.depthwise_conv = P.DepthwiseConv2dNative(channel_multiplier=channel_multiplier,
kernel_size=self.kernel_size,
stride=stride, pad_mode=pad_mode, pad=pad)
self.bias_add = P.BiasAdd()
weight_shape = [channel_multiplier, in_planes, *self.kernel_size]
self.weight = Parameter(initializer('ones', weight_shape), name='weight')
if has_bias:
bias_shape = [channel_multiplier * in_planes]
self.bias = Parameter(initializer('zeros', bias_shape), name='bias')
else:
self.bias = None
def construct(self, x):
output = self.depthwise_conv(x, self.weight)
if self.has_bias:
output = self.bias_add(output, self.bias)
return output
class ConvBNReLU(nn.Cell):
"""
Convolution/Depthwise fused with Batchnorm and ReLU block definition.
Args:
in_planes (int): Input channel.
out_planes (int): Output channel.
kernel_size (int): Input kernel size.
stride (int): Stride size for the first convolutional layer. Default: 1.
groups (int): channel group. Convolution is 1 while Depthiwse is input channel. Default: 1.
Returns:
Tensor, output tensor.
Examples:
>>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1)
"""
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
super(ConvBNReLU, self).__init__()
padding = (kernel_size - 1) // 2
if groups == 1:
conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad',
padding=padding)
else:
conv = DepthwiseConv(in_planes, kernel_size, stride, pad_mode='pad', pad=padding)
layers = [conv, nn.BatchNorm2d(out_planes), nn.ReLU6()]
self.features = nn.SequentialCell(layers)
def construct(self, x):
output = self.features(x)
return output
class InvertedResidual(nn.Cell):
"""
Mobilenetv2 residual block definition.
Args:
inp (int): Input channel.
oup (int): Output channel.
stride (int): Stride size for the first convolutional layer. Default: 1.
expand_ratio (int): expand ration of input channel
Returns:
Tensor, output tensor.
Examples:
>>> ResidualBlock(3, 256, 1, 1)
"""
def __init__(self, inp, oup, stride, expand_ratio):
super(InvertedResidual, self).__init__()
assert stride in [1, 2]
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
layers.extend([
# dw
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
# pw-linear
nn.Conv2d(hidden_dim, oup, kernel_size=1, stride=1, has_bias=False),
nn.BatchNorm2d(oup),
])
self.conv = nn.SequentialCell(layers)
self.add = TensorAdd()
self.cast = P.Cast()
def construct(self, x):
identity = x
x = self.conv(x)
if self.use_res_connect:
return self.add(identity, x)
return x
class FlattenConcat(nn.Cell):
"""
Concatenate predictions into a single tensor.
@ -57,20 +181,17 @@ class FlattenConcat(nn.Cell):
"""
def __init__(self, config):
super(FlattenConcat, self).__init__()
self.sizes = config.FEATURE_SIZE
self.length = len(self.sizes)
self.num_default = config.NUM_DEFAULT
self.concat = P.Concat(axis=-1)
self.num_ssd_boxes = config.NUM_SSD_BOXES
self.concat = P.Concat(axis=1)
self.transpose = P.Transpose()
def construct(self, x):
def construct(self, inputs):
output = ()
for i in range(self.length):
shape = F.shape(x[i])
mid_shape = (shape[0], -1, self.num_default[i], self.sizes[i], self.sizes[i])
final_shape = (shape[0], -1, self.num_default[i] * self.sizes[i] * self.sizes[i])
output += (F.reshape(F.reshape(x[i], mid_shape), final_shape),)
batch_size = F.shape(inputs[0])[0]
for x in inputs:
x = self.transpose(x, (0, 2, 3, 1))
output += (F.reshape(x, (batch_size, -1)),)
res = self.concat(output)
return self.transpose(res, (0, 2, 1))
return F.reshape(res, (batch_size, self.num_ssd_boxes, -1))
class MultiBox(nn.Cell):
@ -145,7 +266,6 @@ class SSD300(nn.Cell):
if not is_training:
self.softmax = P.Softmax()
def construct(self, x):
layer_out_13, output = self.backbone(x)
multi_feature = (layer_out_13, output)