!13041 [ModelZoo]Add tprr to model zoo

From: @zhan_ke
Reviewed-by: 
Signed-off-by:
This commit is contained in:
mindspore-ci-bot 2021-03-15 09:15:31 +08:00 committed by Gitee
commit eca821227d
10 changed files with 1467 additions and 0 deletions

View File

@ -0,0 +1,164 @@
# Contents
- [Thinking Path Re-Ranker](#thinking-path-re-ranker)
- [Model Architecture](#model-architecture)
- [Dataset](#dataset)
- [Features](#features)
- [Mixed Precision](#mixed-precision)
- [Environment Requirements](#environment-requirements)
- [Quick Start](#quick-start)
- [Script Description](#script-description)
- [Script and Sample Code](#script-and-sample-code)
- [Script Parameters](#script-parameters)
- [Training Process](#training-process)
- [Training](#training)
- [Evaluation Process](#evaluation-process)
- [Evaluation](#evaluation)
- [Model Description](#model-description)
- [Performance](#performance)
- [Description of random situation](#description-of-random-situation)
- [ModelZoo Homepage](#modelzoo-homepage)
# [Thinking Path Re-Ranker](#contents)
Thinking Path Re-Ranker(TPRR) was proposed in 2021 by Huawei Poisson Lab & Parallel Distributed Computing Lab. By incorporating the
retriever, reranker and reader modules, TPRR shows excellent performance on open-domain multi-hop question answering. Moreover, TPRR has won
the first place in the current HotpotQA official leaderboard. This is a example of evaluation of TPRR with HotPotQA dataset in MindSpore. More
importantly, this is the first open source version for TPRR.
# [Model Architecture](#contents)
Specially, TPRR contains three main modules. The first is retriever, which generate document sequences of each hop iteratively. The second
is reranker for selecting the best path from candidate paths generated by retriever. The last one is reader for extracting answer spans.
# [Dataset](#contents)
The retriever dataset consists of three parts:
Wikipedia data: the 2017 English Wikipedia dump version with bidirectional hyperlinks.
dev data: HotPotQA full wiki setting dev data with 7398 question-answer pairs.
dev tf-idf data: the candidates for each question in dev data which is originated from top-500 retrieved from 5M paragraphs of Wikipedia
through TF-IDF.
# [Features](#contents)
## [Mixed Precision](#contents)
To ultilize the strong computation power of Ascend chip, and accelerate the evaluation process, the mixed evaluation method is used. MindSpore
is able to cope with FP32 inputs and FP16 operators. In TPRR example, the model is set to FP16 mode for the matmul calculation part.
# [Environment Requirements](#contents)
- Hardware (Ascend)
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
# [Quick Start](#contents)
After installing MindSpore via the official website and Dataset is correctly generated, you can start training and evaluation as follows.
- running on Ascend
```python
# run evaluation example with HotPotQA dev dataset
sh run_eval_ascend.sh
```
# [Script Description](#contents)
## [Script and Sample Code](#contents)
```shell
.
└─tprr
├─README.md
├─scripts
| ├─run_eval_ascend.sh # Launch evaluation in ascend
|
├─src
| ├─config.py # Evaluation configurations
| ├─onehop.py # Onehop model
| ├─onehop_bert.py # Onehop bert model
| ├─process_data.py # Data preprocessing
| ├─twohop.py # Twohop model
| ├─twohop_bert.py # Twohop bert model
| └─utils.py # Utils for evaluation
|
└─retriever_eval.py # Evaluation net for retriever
```
## [Script Parameters](#contents)
Parameters for evaluation can be set in config.py.
- config for TPRR retriever dataset
```python
"q_len": 64, # Max query length
"d_len": 192, # Max doc length
"s_len": 448, # Max sequence length
"in_len": 768, # Input dim
"out_len": 1, # Output dim
"num_docs": 500, # Num of docs
"topk": 8, # Top k
"onehop_num": 8 # Num of onehop doc as twohop neighbor
```
config.py for more configuration.
## [Evaluation Process](#contents)
### Evaluation
- Evaluation on Ascend
```python
sh run_eval_ascend.sh
```
Evaluation result will be stored in the scripts path, whose folder name begins with "eval". You can find the result like the
followings in log.
```python
###step###: 0
val: 0
count: 1
true count: 0
PEM: 0.0
...
###step###: 7396
val:6796
count:7397
true count: 6924
PEM: 0.9187508449371367
true top8 PEM: 0.9815135759676488
evaluation time (h): 20.155506462653477
```
# [Model Description](#contents)
## [Performance](#contents)
### Inference Performance
| Parameter | BGCF Ascend |
| ------------------------------ | ---------------------------- |
| Model Version | Inception V1 |
| Resource | Ascend 910 |
| uploaded Date | 03/12/2021(month/day/year) |
| MindSpore Version | 1.2.0 |
| Dataset | HotPotQA |
| Batch_size | 1 |
| Output | inference path |
| PEM | 0.9188 |
# [Description of random situation](#contents)
No random situation for evaluation.
# [ModelZoo Homepage](#contents)
Please check the official [homepage](http://gitee.com/mindspore/mindspore/tree/master/model_zoo).

View File

@ -0,0 +1,180 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Retriever Evaluation.
"""
import time
import json
import numpy as np
from mindspore import Tensor
import mindspore.context as context
from mindspore.ops import operations as P
from mindspore.common import dtype as mstype
from mindspore import load_checkpoint, load_param_into_net
from src.onehop import OneHopBert
from src.twohop import TwoHopBert
from src.process_data import DataGen
from src.onehop_bert import ModelOneHop
from src.twohop_bert import ModelTwoHop
from src.config import ThinkRetrieverConfig
from src.utils import read_query, split_queries, get_new_title, get_raw_title, save_json
def eval_output(out_2, last_out, path_raw, gold_path, val, true_count):
"""evaluation output"""
y_pred_raw = out_2.asnumpy()
last_out_raw = last_out.asnumpy()
path = []
y_pred = []
last_out_list = []
topk_titles = []
index_list_raw = np.argsort(y_pred_raw)
for index_r in index_list_raw[::-1]:
tag = 1
for raw_path in path:
if path_raw[index_r][0] in raw_path and path_raw[index_r][1] in raw_path:
tag = 0
break
if tag:
path.append(path_raw[index_r])
y_pred.append(y_pred_raw[index_r])
last_out_list.append(last_out_raw[index_r])
index_list = np.argsort(y_pred)
for path_index in index_list:
if gold_path[0] in path[path_index] and gold_path[1] in path[path_index]:
true_count += 1
break
for path_index in index_list[-8:][::-1]:
topk_titles.append(list(path[path_index]))
for path_index in index_list[-8:]:
if gold_path[0] in path[path_index] and gold_path[1] in path[path_index]:
val += 1
break
return val, true_count, topk_titles
def evaluation():
"""evaluation"""
print('********************** loading corpus ********************** ')
s_lc = time.time()
data_generator = DataGen(config)
queries = read_query(config)
print("loading corpus time (h):", (time.time() - s_lc) / 3600)
print('********************** loading model ********************** ')
s_lm = time.time()
model_onehop_bert = ModelOneHop()
param_dict = load_checkpoint(config.onehop_bert_path)
load_param_into_net(model_onehop_bert, param_dict)
model_twohop_bert = ModelTwoHop()
param_dict2 = load_checkpoint(config.twohop_bert_path)
load_param_into_net(model_twohop_bert, param_dict2)
onehop = OneHopBert(config, model_onehop_bert)
twohop = TwoHopBert(config, model_twohop_bert)
print("loading model time (h):", (time.time() - s_lm) / 3600)
print('********************** evaluation ********************** ')
s_tr = time.time()
f_dev = open(config.dev_path, 'rb')
dev_data = json.load(f_dev)
q_gold = {}
q_2id = {}
for onedata in dev_data:
if onedata["question"] not in q_gold:
q_gold[onedata["question"]] = [get_new_title(get_raw_title(item)) for item in onedata['path']]
q_2id[onedata["question"]] = onedata['_id']
val, true_count, count, step = 0, 0, 0, 0
batch_queries = split_queries(config, queries)[:-1]
output_path = []
for _, batch in enumerate(batch_queries):
print("###step###: ", step)
query = batch[0]
temp_dict = {}
temp_dict['q_id'] = q_2id[query]
temp_dict['question'] = query
gold_path = q_gold[query]
input_ids_1, token_type_ids_1, input_mask_1 = data_generator.convert_onehop_to_features(batch)
start = 0
TOTAL = len(input_ids_1)
split_chunk = 8
while start < TOTAL:
end = min(start + split_chunk - 1, TOTAL - 1)
chunk_len = end - start + 1
input_ids_1_ = input_ids_1[start:start + chunk_len]
input_ids_1_ = Tensor(input_ids_1_, mstype.int32)
token_type_ids_1_ = token_type_ids_1[start:start + chunk_len]
token_type_ids_1_ = Tensor(token_type_ids_1_, mstype.int32)
input_mask_1_ = input_mask_1[start:start + chunk_len]
input_mask_1_ = Tensor(input_mask_1_, mstype.int32)
cls_out = onehop(input_ids_1_, token_type_ids_1_, input_mask_1_)
if start == 0:
out = cls_out
else:
out = P.Concat(0)((out, cls_out))
start = end + 1
out = P.Squeeze(1)(out)
onehop_prob, onehop_index = P.TopK(sorted=True)(out, config.topk)
onehop_prob = P.Softmax()(onehop_prob)
sample, path_raw, last_out = data_generator.get_samples(query, onehop_index, onehop_prob)
input_ids_2, token_type_ids_2, input_mask_2 = data_generator.convert_twohop_to_features(sample)
start_2 = 0
TOTAL_2 = len(input_ids_2)
split_chunk = 8
while start_2 < TOTAL_2:
end_2 = min(start_2 + split_chunk - 1, TOTAL_2 - 1)
chunk_len = end_2 - start_2 + 1
input_ids_2_ = input_ids_2[start_2:start_2 + chunk_len]
input_ids_2_ = Tensor(input_ids_2_, mstype.int32)
token_type_ids_2_ = token_type_ids_2[start_2:start_2 + chunk_len]
token_type_ids_2_ = Tensor(token_type_ids_2_, mstype.int32)
input_mask_2_ = input_mask_2[start_2:start_2 + chunk_len]
input_mask_2_ = Tensor(input_mask_2_, mstype.int32)
cls_out = twohop(input_ids_2_, token_type_ids_2_, input_mask_2_)
if start_2 == 0:
out_2 = cls_out
else:
out_2 = P.Concat(0)((out_2, cls_out))
start_2 = end_2 + 1
out_2 = P.Softmax()(out_2)
last_out = Tensor(last_out, mstype.float32)
out_2 = P.Mul()(out_2, last_out)
val, true_count, topk_titles = eval_output(out_2, last_out, path_raw, gold_path, val, true_count)
temp_dict['topk_titles'] = topk_titles
output_path.append(temp_dict)
count += 1
print("val:", val)
print("count:", count)
print("true count:", true_count)
if count:
print("PEM:", val / count)
if true_count:
print("true top8 PEM:", val / true_count)
step += 1
save_json(output_path, config.save_path, config.save_name)
print("evaluation time (h):", (time.time() - s_tr) / 3600)
if __name__ == "__main__":
config = ThinkRetrieverConfig()
context.set_context(mode=context.GRAPH_MODE,
device_target='Ascend',
device_id=config.device_id,
save_graphs=False)
evaluation()

View File

@ -0,0 +1,39 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
# eval script
ulimit -u unlimited
export DEVICE_NUM=1
export RANK_SIZE=$DEVICE_NUM
export RANK_ID=0
if [ -d "eval" ];
then
rm -rf ./eval
fi
mkdir ./eval
cp ../*.py ./eval
cp *.sh ./eval
cp -r ../src ./eval
cd ./eval || exit
env > env.log
echo "start evaluation"
python retriever_eval.py > log.txt 2>&1 &
cd ..

View File

@ -0,0 +1,46 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Retriever Config.
"""
import argparse
def ThinkRetrieverConfig():
"""retriever config"""
parser = argparse.ArgumentParser()
parser.add_argument("--q_len", type=int, default=64, help="max query len")
parser.add_argument("--d_len", type=int, default=192, help="max doc len")
parser.add_argument("--s_len", type=int, default=448, help="max seq len")
parser.add_argument("--in_len", type=int, default=768, help="in len")
parser.add_argument("--out_len", type=int, default=1, help="out len")
parser.add_argument("--num_docs", type=int, default=500, help="docs num")
parser.add_argument("--topk", type=int, default=8, help="top num")
parser.add_argument("--onehop_num", type=int, default=8, help="onehop num")
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
parser.add_argument("--device_id", type=int, default=0, help="device id")
parser.add_argument("--save_name", type=str, default='doc_path', help='name of output')
parser.add_argument("--save_path", type=str, default='./', help='path of output')
parser.add_argument("--vocab_path", type=str, default='./scripts/vocab.txt', help="vocab path")
parser.add_argument("--wiki_path", type=str, default='./scripts/db_docs_bidirection_new.pkl', help="wiki path")
parser.add_argument("--dev_path", type=str, default='./scripts/hotpot_dev_fullwiki_v1_for_retriever.json',
help="dev path")
parser.add_argument("--dev_data_path", type=str, default='./scripts/dev_tf_idf_data_raw.pkl', help="dev data path")
parser.add_argument("--onehop_bert_path", type=str, default='./scripts/onehop.ckpt', help="onehop bert ckpt path")
parser.add_argument("--onehop_mlp_path", type=str, default='./scripts/onehop_mlp.ckpt', help="onehop mlp ckpt path")
parser.add_argument("--twohop_bert_path", type=str, default='./scripts/twohop.ckpt', help="twohop bert ckpt path")
parser.add_argument("--twohop_mlp_path", type=str, default='./scripts/twohop_mlp.ckpt', help="twohop mlp ckpt path")
return parser.parse_args()

View File

@ -0,0 +1,58 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
One Hop Model.
"""
import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore.common import dtype as mstype
from mindspore import load_checkpoint, load_param_into_net
class Model(nn.Cell):
"""mlp model"""
def __init__(self):
super(Model, self).__init__()
self.tanh_0 = nn.Tanh()
self.dense_1 = nn.Dense(in_channels=768, out_channels=1, has_bias=True)
def construct(self, x):
"""construct function"""
opt_tanh_0 = self.tanh_0(x)
opt_dense_1 = self.dense_1(opt_tanh_0)
return opt_dense_1
class OneHopBert(nn.Cell):
"""onehop model"""
def __init__(self, config, network):
super(OneHopBert, self).__init__(auto_prefix=False)
self.network = network
self.mlp = Model()
param_dict = load_checkpoint(config.onehop_mlp_path)
load_param_into_net(self.mlp, param_dict)
self.cast = P.Cast()
def construct(self,
input_ids,
token_type_id,
input_mask):
"""construct function"""
out = self.network(input_ids, token_type_id, input_mask)
out = self.mlp(out)
out = self.cast(out, mstype.float32)
return out

View File

@ -0,0 +1,302 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
One Hop BERT.
"""
import numpy as np
from mindspore import nn
from mindspore import Tensor, Parameter
import mindspore.common.dtype as mstype
from mindspore.ops import operations as P
BATCH_SIZE = -1
class LayerNorm(nn.Cell):
"""layer norm"""
def __init__(self):
super(LayerNorm, self).__init__()
self.reducemean_0 = P.ReduceMean(keep_dims=True)
self.sub_1 = P.Sub()
self.cast_2 = P.Cast()
self.cast_2_to = mstype.float32
self.pow_3 = P.Pow()
self.pow_3_input_weight = 2.0
self.reducemean_4 = P.ReduceMean(keep_dims=True)
self.add_5 = P.Add()
self.add_5_bias = 9.999999960041972e-13
self.sqrt_6 = P.Sqrt()
self.div_7 = P.Div()
self.mul_8 = P.Mul()
self.mul_8_w = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
self.add_9 = P.Add()
self.add_9_bias = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
def construct(self, x):
"""construct function"""
opt_reducemean_0 = self.reducemean_0(x, -1)
opt_sub_1 = self.sub_1(x, opt_reducemean_0)
opt_cast_2 = self.cast_2(opt_sub_1, self.cast_2_to)
opt_pow_3 = self.pow_3(opt_cast_2, self.pow_3_input_weight)
opt_reducemean_4 = self.reducemean_4(opt_pow_3, -1)
opt_add_5 = self.add_5(opt_reducemean_4, self.add_5_bias)
opt_sqrt_6 = self.sqrt_6(opt_add_5)
opt_div_7 = self.div_7(opt_sub_1, opt_sqrt_6)
opt_mul_8 = self.mul_8(opt_div_7, self.mul_8_w)
opt_add_9 = self.add_9(opt_mul_8, self.add_9_bias)
return opt_add_9
class MultiHeadAttn(nn.Cell):
"""multi head attention layer"""
def __init__(self):
super(MultiHeadAttn, self).__init__()
self.matmul_0 = nn.MatMul()
self.matmul_0.to_float(mstype.float16)
self.matmul_0_w = Parameter(Tensor(np.random.uniform(0, 1, (768, 768)).astype(np.float32)), name=None)
self.matmul_1 = nn.MatMul()
self.matmul_1.to_float(mstype.float16)
self.matmul_1_w = Parameter(Tensor(np.random.uniform(0, 1, (768, 768)).astype(np.float32)), name=None)
self.matmul_2 = nn.MatMul()
self.matmul_2.to_float(mstype.float16)
self.matmul_2_w = Parameter(Tensor(np.random.uniform(0, 1, (768, 768)).astype(np.float32)), name=None)
self.add_3 = P.Add()
self.add_3_bias = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
self.add_4 = P.Add()
self.add_4_bias = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
self.add_5 = P.Add()
self.add_5_bias = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
self.reshape_6 = P.Reshape()
self.reshape_6_shape = tuple([BATCH_SIZE, 256, 12, 64])
self.reshape_7 = P.Reshape()
self.reshape_7_shape = tuple([BATCH_SIZE, 256, 12, 64])
self.reshape_8 = P.Reshape()
self.reshape_8_shape = tuple([BATCH_SIZE, 256, 12, 64])
self.transpose_9 = P.Transpose()
self.transpose_10 = P.Transpose()
self.transpose_11 = P.Transpose()
self.matmul_12 = nn.MatMul()
self.matmul_12.to_float(mstype.float16)
self.div_13 = P.Div()
self.div_13_w = 8.0
self.add_14 = P.Add()
self.softmax_15 = nn.Softmax(axis=3)
self.matmul_16 = nn.MatMul()
self.matmul_16.to_float(mstype.float16)
self.transpose_17 = P.Transpose()
self.reshape_18 = P.Reshape()
self.reshape_18_shape = tuple([BATCH_SIZE, 256, 768])
self.matmul_19 = nn.MatMul()
self.matmul_19.to_float(mstype.float16)
self.matmul_19_w = Parameter(Tensor(np.random.uniform(0, 1, (768, 768)).astype(np.float32)), name=None)
self.add_20 = P.Add()
self.add_20_bias = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
def construct(self, x, x0):
"""construct function"""
opt_matmul_0 = self.matmul_0(x, self.matmul_0_w)
opt_matmul_1 = self.matmul_1(x, self.matmul_1_w)
opt_matmul_2 = self.matmul_2(x, self.matmul_2_w)
opt_matmul_0 = P.Cast()(opt_matmul_0, mstype.float32)
opt_matmul_1 = P.Cast()(opt_matmul_1, mstype.float32)
opt_matmul_2 = P.Cast()(opt_matmul_2, mstype.float32)
opt_add_3 = self.add_3(opt_matmul_0, self.add_3_bias)
opt_add_4 = self.add_4(opt_matmul_1, self.add_4_bias)
opt_add_5 = self.add_5(opt_matmul_2, self.add_5_bias)
opt_reshape_6 = self.reshape_6(opt_add_3, self.reshape_6_shape)
opt_reshape_7 = self.reshape_7(opt_add_4, self.reshape_7_shape)
opt_reshape_8 = self.reshape_8(opt_add_5, self.reshape_8_shape)
opt_transpose_9 = self.transpose_9(opt_reshape_6, (0, 2, 1, 3))
opt_transpose_10 = self.transpose_10(opt_reshape_7, (0, 2, 3, 1))
opt_transpose_11 = self.transpose_11(opt_reshape_8, (0, 2, 1, 3))
opt_matmul_12 = self.matmul_12(opt_transpose_9, opt_transpose_10)
opt_matmul_12 = P.Cast()(opt_matmul_12, mstype.float32)
opt_div_13 = self.div_13(opt_matmul_12, self.div_13_w)
opt_add_14 = self.add_14(opt_div_13, x0)
opt_add_14 = P.Cast()(opt_add_14, mstype.float32)
opt_softmax_15 = self.softmax_15(opt_add_14)
opt_matmul_16 = self.matmul_16(opt_softmax_15, opt_transpose_11)
opt_matmul_16 = P.Cast()(opt_matmul_16, mstype.float32)
opt_transpose_17 = self.transpose_17(opt_matmul_16, (0, 2, 1, 3))
opt_reshape_18 = self.reshape_18(opt_transpose_17, self.reshape_18_shape)
opt_matmul_19 = self.matmul_19(opt_reshape_18, self.matmul_19_w)
opt_matmul_19 = P.Cast()(opt_matmul_19, mstype.float32)
opt_add_20 = self.add_20(opt_matmul_19, self.add_20_bias)
return opt_add_20
class Linear(nn.Cell):
"""linear layer"""
def __init__(self, matmul_0_weight_shape, add_1_bias_shape):
super(Linear, self).__init__()
self.matmul_0 = nn.MatMul()
self.matmul_0.to_float(mstype.float16)
self.matmul_0_w = Parameter(Tensor(np.random.uniform(0, 1, matmul_0_weight_shape).astype(np.float32)),
name=None)
self.add_1 = P.Add()
self.add_1_bias = Parameter(Tensor(np.random.uniform(0, 1, add_1_bias_shape).astype(np.float32)), name=None)
def construct(self, x):
"""construct function"""
opt_matmul_0 = self.matmul_0(x, self.matmul_0_w)
opt_matmul_0 = P.Cast()(opt_matmul_0, mstype.float32)
opt_add_1 = self.add_1(opt_matmul_0, self.add_1_bias)
return opt_add_1
class GeLU(nn.Cell):
"""gelu layer"""
def __init__(self):
super(GeLU, self).__init__()
self.div_0 = P.Div()
self.div_0_w = 1.4142135381698608
self.erf_1 = P.Erf()
self.add_2 = P.Add()
self.add_2_bias = 1.0
self.mul_3 = P.Mul()
self.mul_4 = P.Mul()
self.mul_4_w = 0.5
def construct(self, x):
"""construct function"""
opt_div_0 = self.div_0(x, self.div_0_w)
opt_erf_1 = self.erf_1(opt_div_0)
opt_add_2 = self.add_2(opt_erf_1, self.add_2_bias)
opt_mul_3 = self.mul_3(x, opt_add_2)
opt_mul_4 = self.mul_4(opt_mul_3, self.mul_4_w)
return opt_mul_4
class TransformerLayer(nn.Cell):
"""transformer layer"""
def __init__(self, linear3_0_matmul_0_weight_shape, linear3_0_add_1_bias_shape, linear3_1_matmul_0_weight_shape,
linear3_1_add_1_bias_shape):
super(TransformerLayer, self).__init__()
self.multiheadattn_0 = MultiHeadAttn()
self.add_0 = P.Add()
self.layernorm1_0 = LayerNorm()
self.linear3_0 = Linear(matmul_0_weight_shape=linear3_0_matmul_0_weight_shape,
add_1_bias_shape=linear3_0_add_1_bias_shape)
self.gelu1_0 = GeLU()
self.linear3_1 = Linear(matmul_0_weight_shape=linear3_1_matmul_0_weight_shape,
add_1_bias_shape=linear3_1_add_1_bias_shape)
self.add_1 = P.Add()
self.layernorm1_1 = LayerNorm()
def construct(self, x, x0):
"""construct function"""
multiheadattn_0_opt = self.multiheadattn_0(x, x0)
opt_add_0 = self.add_0(multiheadattn_0_opt, x)
layernorm1_0_opt = self.layernorm1_0(opt_add_0)
linear3_0_opt = self.linear3_0(layernorm1_0_opt)
gelu1_0_opt = self.gelu1_0(linear3_0_opt)
linear3_1_opt = self.linear3_1(gelu1_0_opt)
opt_add_1 = self.add_1(linear3_1_opt, layernorm1_0_opt)
layernorm1_1_opt = self.layernorm1_1(opt_add_1)
return layernorm1_1_opt
class Encoder1_4(nn.Cell):
"""encoder layer"""
def __init__(self):
super(Encoder1_4, self).__init__()
self.module47_0 = TransformerLayer(linear3_0_matmul_0_weight_shape=(768, 3072),
linear3_0_add_1_bias_shape=(3072,),
linear3_1_matmul_0_weight_shape=(3072, 768),
linear3_1_add_1_bias_shape=(768,))
self.module47_1 = TransformerLayer(linear3_0_matmul_0_weight_shape=(768, 3072),
linear3_0_add_1_bias_shape=(3072,),
linear3_1_matmul_0_weight_shape=(3072, 768),
linear3_1_add_1_bias_shape=(768,))
self.module47_2 = TransformerLayer(linear3_0_matmul_0_weight_shape=(768, 3072),
linear3_0_add_1_bias_shape=(3072,),
linear3_1_matmul_0_weight_shape=(3072, 768),
linear3_1_add_1_bias_shape=(768,))
self.module47_3 = TransformerLayer(linear3_0_matmul_0_weight_shape=(768, 3072),
linear3_0_add_1_bias_shape=(3072,),
linear3_1_matmul_0_weight_shape=(3072, 768),
linear3_1_add_1_bias_shape=(768,))
def construct(self, x, x0):
"""construct function"""
module47_0_opt = self.module47_0(x, x0)
module47_1_opt = self.module47_1(module47_0_opt, x0)
module47_2_opt = self.module47_2(module47_1_opt, x0)
module47_3_opt = self.module47_3(module47_2_opt, x0)
return module47_3_opt
class ModelOneHop(nn.Cell):
"""one hop layer"""
def __init__(self):
super(ModelOneHop, self).__init__()
self.expanddims_0 = P.ExpandDims()
self.expanddims_0_axis = 1
self.expanddims_3 = P.ExpandDims()
self.expanddims_3_axis = 2
self.cast_5 = P.Cast()
self.cast_5_to = mstype.float32
self.sub_7 = P.Sub()
self.sub_7_bias = 1.0
self.mul_9 = P.Mul()
self.mul_9_w = -10000.0
self.gather_1_input_weight = Parameter(Tensor(np.random.uniform(0, 1, (30522, 768)).astype(np.float32)),
name=None)
self.gather_1_axis = 0
self.gather_1 = P.Gather()
self.gather_2_input_weight = Parameter(Tensor(np.random.uniform(0, 1, (2, 768)).astype(np.float32)), name=None)
self.gather_2_axis = 0
self.gather_2 = P.Gather()
self.add_4 = P.Add()
self.add_4_bias = Parameter(Tensor(np.random.uniform(0, 1, (1, 256, 768)).astype(np.float32)), name=None)
self.add_6 = P.Add()
self.layernorm1_0 = LayerNorm()
self.module51_0 = Encoder1_4()
self.module51_1 = Encoder1_4()
self.module51_2 = Encoder1_4()
self.gather_643_input_weight = Tensor(np.array(0))
self.gather_643_axis = 1
self.gather_643 = P.Gather()
self.dense_644 = nn.Dense(in_channels=768, out_channels=768, has_bias=True)
self.tanh_645 = nn.Tanh()
def construct(self, input_ids, token_type_ids, attention_mask):
"""construct function"""
input_ids = self.cast_5(input_ids, mstype.int32)
token_type_ids = self.cast_5(token_type_ids, mstype.int32)
attention_mask = self.cast_5(attention_mask, mstype.int32)
opt_expanddims_0 = self.expanddims_0(attention_mask, self.expanddims_0_axis)
opt_expanddims_3 = self.expanddims_3(opt_expanddims_0, self.expanddims_3_axis)
opt_cast_5 = self.cast_5(opt_expanddims_3, self.cast_5_to)
opt_sub_7 = self.sub_7(self.sub_7_bias, opt_cast_5)
opt_mul_9 = self.mul_9(opt_sub_7, self.mul_9_w)
opt_gather_1_axis = self.gather_1_axis
opt_gather_1 = self.gather_1(self.gather_1_input_weight, input_ids, opt_gather_1_axis)
opt_gather_2_axis = self.gather_2_axis
opt_gather_2 = self.gather_2(self.gather_2_input_weight, token_type_ids, opt_gather_2_axis)
opt_add_4 = self.add_4(opt_gather_1, self.add_4_bias)
opt_add_6 = self.add_6(opt_add_4, opt_gather_2)
layernorm1_0_opt = self.layernorm1_0(opt_add_6)
module51_0_opt = self.module51_0(layernorm1_0_opt, opt_mul_9)
module51_1_opt = self.module51_1(module51_0_opt, opt_mul_9)
module51_2_opt = self.module51_2(module51_1_opt, opt_mul_9)
opt_gather_643_axis = self.gather_643_axis
opt_gather_643 = self.gather_643(module51_2_opt, self.gather_643_input_weight, opt_gather_643_axis)
opt_dense_644 = self.dense_644(opt_gather_643)
opt_tanh_645 = self.tanh_645(opt_dense_644)
return opt_tanh_645

View File

@ -0,0 +1,254 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Process Data.
"""
import json
import pickle as pkl
from transformers import BertTokenizer
from src.utils import get_new_title, get_raw_title
class DataGen:
"""data generator"""
def __init__(self, config):
"""init function"""
self.wiki_path = config.wiki_path
self.dev_path = config.dev_path
self.dev_data_path = config.dev_data_path
self.num_docs = config.num_docs
self.max_q_len = config.q_len
self.max_doc_len = config.d_len
self.max_seq_len2 = config.s_len
self.vocab = config.vocab_path
self.onehop_num = config.onehop_num
self.data_db, self.dev_data, self.q_doc_text = self.load_data()
self.query2id, self.q_gold = self.process_data()
self.id2title, self.id2doc, self.query_id_list, self.id2query = self.load_id2()
def load_data(self):
"""load data"""
print('********************** loading data ********************** ')
f_wiki = open(self.wiki_path, 'rb')
f_train = open(self.dev_path, 'rb')
f_doc = open(self.dev_data_path, 'rb')
data_db = pkl.load(f_wiki, encoding="gbk")
dev_data = json.load(f_train)
q_doc_text = pkl.load(f_doc, encoding='gbk')
return data_db, dev_data, q_doc_text
def process_data(self):
"""process data"""
query2id = {}
q_gold = {}
for onedata in self.dev_data:
if onedata['question'] not in query2id:
q_gold[onedata['_id']] = {}
query2id[onedata['question']] = onedata['_id']
gold_path = []
for item in onedata['path']:
gold_path.append(get_raw_title(item))
q_gold[onedata['_id']]['title'] = gold_path
gold_text = []
for item in gold_path:
gold_text.append(self.data_db[get_new_title(item)]['text'])
q_gold[onedata['_id']]['text'] = gold_text
return query2id, q_gold
def load_id2(self):
"""load dev data"""
with open(self.dev_data_path, 'rb') as f:
temp_dev_dic = pkl.load(f, encoding='gbk')
id2title = {}
id2doc = {}
id2query = {}
query_id_list = []
for q_id in temp_dev_dic:
id2title[q_id] = temp_dev_dic[q_id]['title']
id2doc[q_id] = temp_dev_dic[q_id]['text']
query_id_list.append(q_id)
id2query[q_id] = temp_dev_dic[q_id]['query']
return id2title, id2doc, query_id_list, id2query
def get_query2id(self, query):
"""get query id"""
output_list = []
for item in query:
output_list.append(self.query2id[item])
return output_list
def get_linked_text(self, title):
"""get linked text"""
linked_title_list = []
raw_title_list = self.data_db[get_new_title(title)]['linked_title'].split('\t')
for item in raw_title_list:
if item and self.data_db[get_new_title(item)].get("text"):
linked_title_list.append(get_new_title(item))
output_twohop_list = []
for item in linked_title_list:
output_twohop_list.append(self.data_db[get_new_title(item)]['text'])
return output_twohop_list, linked_title_list
def convert_onehop_to_features(self, query,
cls_token='[CLS]',
sep_token='[SEP]',
pad_token=0):
"""convert one hop data to features"""
query_id = self.get_query2id(query)
examples = []
count = 0
for item in query_id:
title_doc_list = []
for i in range(len(self.q_doc_text[item]['text'][:self.num_docs])):
title_doc_list.append([query[count], self.q_doc_text[item]["text"][i]])
examples += title_doc_list
count += 1
max_q_len = self.max_q_len
max_doc_len = self.max_doc_len
tokenizer = BertTokenizer.from_pretrained(self.vocab, do_lower_case=True)
input_ids_list = []
token_type_ids_list = []
attention_mask_list = []
for _, example in enumerate(examples):
tokens_q = tokenizer.tokenize(example[0])
tokens_d1 = tokenizer.tokenize(example[1])
special_tokens_count = 2
if len(tokens_q) > max_q_len - 1:
tokens_q = tokens_q[:(max_q_len - 1)]
if len(tokens_d1) > max_doc_len - special_tokens_count:
tokens_d1 = tokens_d1[:(max_doc_len - special_tokens_count)]
tokens_q = [cls_token] + tokens_q
tokens_d = [sep_token]
tokens_d += tokens_d1
tokens_d += [sep_token]
q_ids = tokenizer.convert_tokens_to_ids(tokens_q)
d_ids = tokenizer.convert_tokens_to_ids(tokens_d)
padding_length_d = max_doc_len - len(d_ids)
padding_length_q = max_q_len - len(q_ids)
input_ids = q_ids + ([pad_token] * padding_length_q) + d_ids + ([pad_token] * padding_length_d)
token_type_ids = [0] * max_q_len
token_type_ids += [1] * max_doc_len
attention_mask_id = []
for item in input_ids:
attention_mask_id.append(item != 0)
input_ids_list.append(input_ids)
token_type_ids_list.append(token_type_ids)
attention_mask_list.append(attention_mask_id)
return input_ids_list, token_type_ids_list, attention_mask_list
def convert_twohop_to_features(self, examples,
cls_token='[CLS]',
sep_token='[SEP]',
pad_token=0):
"""convert two hop data to features"""
max_q_len = self.max_q_len
max_doc_len = self.max_doc_len
max_seq_len = self.max_seq_len2
tokenizer = BertTokenizer.from_pretrained(self.vocab, do_lower_case=True)
input_ids_list = []
token_type_ids_list = []
attention_mask_list = []
for _, example in enumerate(examples):
tokens_q = tokenizer.tokenize(example[0])
tokens_d1 = tokenizer.tokenize(example[1])
tokens_d2 = tokenizer.tokenize(example[2])
special_tokens_count1 = 1
special_tokens_count2 = 2
if len(tokens_q) > max_q_len - 1:
tokens_q = tokens_q[:(max_q_len - 1)]
if len(tokens_d1) > max_doc_len - special_tokens_count1:
tokens_d1 = tokens_d1[:(max_doc_len - special_tokens_count1)]
if len(tokens_d2) > max_doc_len - special_tokens_count2:
tokens_d2 = tokens_d2[:(max_doc_len - special_tokens_count2)]
tokens = [cls_token] + tokens_q
tokens += [sep_token]
tokens += tokens_d1
tokens += [sep_token]
tokens += tokens_d2
tokens += [sep_token]
input_ids = tokenizer.convert_tokens_to_ids(tokens)
padding_length = max_seq_len - len(input_ids)
input_ids = input_ids + ([pad_token] * padding_length)
token_type_ids = [0] * (len(tokens_q) + 1)
token_type_ids += [1] * (len(tokens_d1) + 1)
token_type_ids += [1] * (max_seq_len - len(token_type_ids))
attention_mask_id = []
for item in input_ids:
attention_mask_id.append(item != 0)
input_ids_list.append(input_ids)
token_type_ids_list.append(token_type_ids)
attention_mask_list.append(attention_mask_id)
return input_ids_list, token_type_ids_list, attention_mask_list
def get_samples(self, query, onehop_index, onehop_prob):
"""get samples"""
query = self.get_query2id([query])
index_np = onehop_index.asnumpy()
onehop_prob = onehop_prob.asnumpy()
sample = []
path = []
last_out = []
q_id = query[0]
q_text = self.id2query[q_id]
onehop_ids_list = index_np
onehop_text_list = []
onehop_title_list = []
for ids in list(onehop_ids_list):
onehop_text_list.append(self.id2doc[q_id][ids])
onehop_title_list.append(self.id2title[q_id][ids])
twohop_text_list = []
twohop_title_list = []
for title in onehop_title_list:
two_hop_text, two_hop_title = self.get_linked_text(title)
twohop_text_list.append(two_hop_text[:1000])
twohop_title_list.append(two_hop_title[:1000])
d1_count = 0
d2_count = 0
tiny_sample = []
tiny_path = []
for i in range(1, self.onehop_num):
tiny_sample.append((q_text, onehop_text_list[0], onehop_text_list[i]))
tiny_path.append((get_new_title(onehop_title_list[0]), get_new_title(onehop_title_list[i])))
last_out.append(onehop_prob[d1_count])
for twohop_text_tiny_list in twohop_text_list:
for twohop_text in twohop_text_tiny_list:
tiny_sample.append((q_text, onehop_text_list[d1_count], twohop_text))
last_out.append(onehop_prob[d1_count])
d1_count += 1
for twohop_title_tiny_list in twohop_title_list:
for twohop_title in twohop_title_tiny_list:
tiny_path.append((get_new_title(onehop_title_list[d2_count]), get_new_title(twohop_title)))
d2_count += 1
sample += tiny_sample
path += tiny_path
return sample, path, last_out

View File

@ -0,0 +1,60 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Two Hop Model.
"""
import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore.common import dtype as mstype
from mindspore import load_checkpoint, load_param_into_net
class Model(nn.Cell):
"""mlp model"""
def __init__(self):
super(Model, self).__init__()
self.tanh_0 = nn.Tanh()
self.dense_1 = nn.Dense(in_channels=768, out_channels=1, has_bias=True)
def construct(self, x):
"""construct function"""
opt_tanh_0 = self.tanh_0(x)
opt_dense_1 = self.dense_1(opt_tanh_0)
return opt_dense_1
class TwoHopBert(nn.Cell):
"""two hop model"""
def __init__(self, config, network):
super(TwoHopBert, self).__init__(auto_prefix=False)
self.network = network
self.mlp = Model()
param_dict = load_checkpoint(config.twohop_mlp_path)
load_param_into_net(self.mlp, param_dict)
self.reshape = P.Reshape()
self.cast = P.Cast()
def construct(self,
input_ids,
token_type_id,
input_mask):
"""construct function"""
out = self.network(input_ids, token_type_id, input_mask)
out = self.mlp(out)
out = self.cast(out, mstype.float32)
out = self.reshape(out, (-1,))
return out

View File

@ -0,0 +1,302 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Two Hop BERT.
"""
import numpy as np
from mindspore import nn
from mindspore import Tensor, Parameter
import mindspore.common.dtype as mstype
from mindspore.ops import operations as P
BATCH_SIZE = -1
class LayerNorm(nn.Cell):
"""layer norm"""
def __init__(self):
super(LayerNorm, self).__init__()
self.reducemean_0 = P.ReduceMean(keep_dims=True)
self.sub_1 = P.Sub()
self.cast_2 = P.Cast()
self.cast_2_to = mstype.float32
self.pow_3 = P.Pow()
self.pow_3_input_weight = 2.0
self.reducemean_4 = P.ReduceMean(keep_dims=True)
self.add_5 = P.Add()
self.add_5_bias = 9.999999960041972e-13
self.sqrt_6 = P.Sqrt()
self.div_7 = P.Div()
self.mul_8 = P.Mul()
self.mul_8_w = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
self.add_9 = P.Add()
self.add_9_bias = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
def construct(self, x):
"""construct function"""
opt_reducemean_0 = self.reducemean_0(x, -1)
opt_sub_1 = self.sub_1(x, opt_reducemean_0)
opt_cast_2 = self.cast_2(opt_sub_1, self.cast_2_to)
opt_pow_3 = self.pow_3(opt_cast_2, self.pow_3_input_weight)
opt_reducemean_4 = self.reducemean_4(opt_pow_3, -1)
opt_add_5 = self.add_5(opt_reducemean_4, self.add_5_bias)
opt_sqrt_6 = self.sqrt_6(opt_add_5)
opt_div_7 = self.div_7(opt_sub_1, opt_sqrt_6)
opt_mul_8 = self.mul_8(opt_div_7, self.mul_8_w)
opt_add_9 = self.add_9(opt_mul_8, self.add_9_bias)
return opt_add_9
class MultiHeadAttn(nn.Cell):
"""multi head attention layer"""
def __init__(self):
super(MultiHeadAttn, self).__init__()
self.matmul_0 = nn.MatMul()
self.matmul_0.to_float(mstype.float16)
self.matmul_0_w = Parameter(Tensor(np.random.uniform(0, 1, (768, 768)).astype(np.float32)), name=None)
self.matmul_1 = nn.MatMul()
self.matmul_1.to_float(mstype.float16)
self.matmul_1_w = Parameter(Tensor(np.random.uniform(0, 1, (768, 768)).astype(np.float32)), name=None)
self.matmul_2 = nn.MatMul()
self.matmul_2.to_float(mstype.float16)
self.matmul_2_w = Parameter(Tensor(np.random.uniform(0, 1, (768, 768)).astype(np.float32)), name=None)
self.add_3 = P.Add()
self.add_3_bias = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
self.add_4 = P.Add()
self.add_4_bias = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
self.add_5 = P.Add()
self.add_5_bias = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
self.reshape_6 = P.Reshape()
self.reshape_6_shape = tuple([BATCH_SIZE, 448, 12, 64])
self.reshape_7 = P.Reshape()
self.reshape_7_shape = tuple([BATCH_SIZE, 448, 12, 64])
self.reshape_8 = P.Reshape()
self.reshape_8_shape = tuple([BATCH_SIZE, 448, 12, 64])
self.transpose_9 = P.Transpose()
self.transpose_10 = P.Transpose()
self.transpose_11 = P.Transpose()
self.matmul_12 = nn.MatMul()
self.matmul_12.to_float(mstype.float16)
self.div_13 = P.Div()
self.div_13_w = 8.0
self.add_14 = P.Add()
self.softmax_15 = nn.Softmax(axis=3)
self.matmul_16 = nn.MatMul()
self.matmul_16.to_float(mstype.float16)
self.transpose_17 = P.Transpose()
self.reshape_18 = P.Reshape()
self.reshape_18_shape = tuple([BATCH_SIZE, 448, 768])
self.matmul_19 = nn.MatMul()
self.matmul_19.to_float(mstype.float16)
self.matmul_19_w = Parameter(Tensor(np.random.uniform(0, 1, (768, 768)).astype(np.float32)), name=None)
self.add_20 = P.Add()
self.add_20_bias = Parameter(Tensor(np.random.uniform(0, 1, (768,)).astype(np.float32)), name=None)
def construct(self, x, x0):
"""construct function"""
opt_matmul_0 = self.matmul_0(x, self.matmul_0_w)
opt_matmul_1 = self.matmul_1(x, self.matmul_1_w)
opt_matmul_2 = self.matmul_2(x, self.matmul_2_w)
opt_matmul_0 = P.Cast()(opt_matmul_0, mstype.float32)
opt_matmul_1 = P.Cast()(opt_matmul_1, mstype.float32)
opt_matmul_2 = P.Cast()(opt_matmul_2, mstype.float32)
opt_add_3 = self.add_3(opt_matmul_0, self.add_3_bias)
opt_add_4 = self.add_4(opt_matmul_1, self.add_4_bias)
opt_add_5 = self.add_5(opt_matmul_2, self.add_5_bias)
opt_reshape_6 = self.reshape_6(opt_add_3, self.reshape_6_shape)
opt_reshape_7 = self.reshape_7(opt_add_4, self.reshape_7_shape)
opt_reshape_8 = self.reshape_8(opt_add_5, self.reshape_8_shape)
opt_transpose_9 = self.transpose_9(opt_reshape_6, (0, 2, 1, 3))
opt_transpose_10 = self.transpose_10(opt_reshape_7, (0, 2, 3, 1))
opt_transpose_11 = self.transpose_11(opt_reshape_8, (0, 2, 1, 3))
opt_matmul_12 = self.matmul_12(opt_transpose_9, opt_transpose_10)
opt_matmul_12 = P.Cast()(opt_matmul_12, mstype.float32)
opt_div_13 = self.div_13(opt_matmul_12, self.div_13_w)
opt_add_14 = self.add_14(opt_div_13, x0)
opt_add_14 = P.Cast()(opt_add_14, mstype.float32)
opt_softmax_15 = self.softmax_15(opt_add_14)
opt_matmul_16 = self.matmul_16(opt_softmax_15, opt_transpose_11)
opt_matmul_16 = P.Cast()(opt_matmul_16, mstype.float32)
opt_transpose_17 = self.transpose_17(opt_matmul_16, (0, 2, 1, 3))
opt_reshape_18 = self.reshape_18(opt_transpose_17, self.reshape_18_shape)
opt_matmul_19 = self.matmul_19(opt_reshape_18, self.matmul_19_w)
opt_matmul_19 = P.Cast()(opt_matmul_19, mstype.float32)
opt_add_20 = self.add_20(opt_matmul_19, self.add_20_bias)
return opt_add_20
class Linear(nn.Cell):
"""linear layer"""
def __init__(self, matmul_0_weight_shape, add_1_bias_shape):
super(Linear, self).__init__()
self.matmul_0 = nn.MatMul()
self.matmul_0.to_float(mstype.float16)
self.matmul_0_w = Parameter(Tensor(np.random.uniform(0, 1, matmul_0_weight_shape).astype(np.float32)),
name=None)
self.add_1 = P.Add()
self.add_1_bias = Parameter(Tensor(np.random.uniform(0, 1, add_1_bias_shape).astype(np.float32)), name=None)
def construct(self, x):
"""construct function"""
opt_matmul_0 = self.matmul_0(x, self.matmul_0_w)
opt_matmul_0 = P.Cast()(opt_matmul_0, mstype.float32)
opt_add_1 = self.add_1(opt_matmul_0, self.add_1_bias)
return opt_add_1
class GeLU(nn.Cell):
"""gelu layer"""
def __init__(self):
super(GeLU, self).__init__()
self.div_0 = P.Div()
self.div_0_w = 1.4142135381698608
self.erf_1 = P.Erf()
self.add_2 = P.Add()
self.add_2_bias = 1.0
self.mul_3 = P.Mul()
self.mul_4 = P.Mul()
self.mul_4_w = 0.5
def construct(self, x):
"""construct function"""
opt_div_0 = self.div_0(x, self.div_0_w)
opt_erf_1 = self.erf_1(opt_div_0)
opt_add_2 = self.add_2(opt_erf_1, self.add_2_bias)
opt_mul_3 = self.mul_3(x, opt_add_2)
opt_mul_4 = self.mul_4(opt_mul_3, self.mul_4_w)
return opt_mul_4
class TransformerLayer(nn.Cell):
"""transformer layer"""
def __init__(self, linear3_0_matmul_0_weight_shape, linear3_0_add_1_bias_shape, linear3_1_matmul_0_weight_shape,
linear3_1_add_1_bias_shape):
super(TransformerLayer, self).__init__()
self.multiheadattn_0 = MultiHeadAttn()
self.add_0 = P.Add()
self.layernorm1_0 = LayerNorm()
self.linear3_0 = Linear(matmul_0_weight_shape=linear3_0_matmul_0_weight_shape,
add_1_bias_shape=linear3_0_add_1_bias_shape)
self.gelu1_0 = GeLU()
self.linear3_1 = Linear(matmul_0_weight_shape=linear3_1_matmul_0_weight_shape,
add_1_bias_shape=linear3_1_add_1_bias_shape)
self.add_1 = P.Add()
self.layernorm1_1 = LayerNorm()
def construct(self, x, x0):
"""construct function"""
multiheadattn_0_opt = self.multiheadattn_0(x, x0)
opt_add_0 = self.add_0(multiheadattn_0_opt, x)
layernorm1_0_opt = self.layernorm1_0(opt_add_0)
linear3_0_opt = self.linear3_0(layernorm1_0_opt)
gelu1_0_opt = self.gelu1_0(linear3_0_opt)
linear3_1_opt = self.linear3_1(gelu1_0_opt)
opt_add_1 = self.add_1(linear3_1_opt, layernorm1_0_opt)
layernorm1_1_opt = self.layernorm1_1(opt_add_1)
return layernorm1_1_opt
class Encoder1_4(nn.Cell):
"""encoder layer"""
def __init__(self):
super(Encoder1_4, self).__init__()
self.module46_0 = TransformerLayer(linear3_0_matmul_0_weight_shape=(768, 3072),
linear3_0_add_1_bias_shape=(3072,),
linear3_1_matmul_0_weight_shape=(3072, 768),
linear3_1_add_1_bias_shape=(768,))
self.module46_1 = TransformerLayer(linear3_0_matmul_0_weight_shape=(768, 3072),
linear3_0_add_1_bias_shape=(3072,),
linear3_1_matmul_0_weight_shape=(3072, 768),
linear3_1_add_1_bias_shape=(768,))
self.module46_2 = TransformerLayer(linear3_0_matmul_0_weight_shape=(768, 3072),
linear3_0_add_1_bias_shape=(3072,),
linear3_1_matmul_0_weight_shape=(3072, 768),
linear3_1_add_1_bias_shape=(768,))
self.module46_3 = TransformerLayer(linear3_0_matmul_0_weight_shape=(768, 3072),
linear3_0_add_1_bias_shape=(3072,),
linear3_1_matmul_0_weight_shape=(3072, 768),
linear3_1_add_1_bias_shape=(768,))
def construct(self, x, x0):
"""construct function"""
module46_0_opt = self.module46_0(x, x0)
module46_1_opt = self.module46_1(module46_0_opt, x0)
module46_2_opt = self.module46_2(module46_1_opt, x0)
module46_3_opt = self.module46_3(module46_2_opt, x0)
return module46_3_opt
class ModelTwoHop(nn.Cell):
"""two hop layer"""
def __init__(self):
super(ModelTwoHop, self).__init__()
self.expanddims_0 = P.ExpandDims()
self.expanddims_0_axis = 1
self.expanddims_3 = P.ExpandDims()
self.expanddims_3_axis = 2
self.cast_5 = P.Cast()
self.cast_5_to = mstype.float32
self.sub_7 = P.Sub()
self.sub_7_bias = 1.0
self.mul_9 = P.Mul()
self.mul_9_w = -10000.0
self.gather_1_input_weight = Parameter(Tensor(np.random.uniform(0, 1, (30522, 768)).astype(np.float32)),
name=None)
self.gather_1_axis = 0
self.gather_1 = P.Gather()
self.gather_2_input_weight = Parameter(Tensor(np.random.uniform(0, 1, (2, 768)).astype(np.float32)), name=None)
self.gather_2_axis = 0
self.gather_2 = P.Gather()
self.add_4 = P.Add()
self.add_6 = P.Add()
self.add_6_bias = Parameter(Tensor(np.random.uniform(0, 1, (1, 448, 768)).astype(np.float32)), name=None)
self.layernorm1_0 = LayerNorm()
self.module50_0 = Encoder1_4()
self.module50_1 = Encoder1_4()
self.module50_2 = Encoder1_4()
self.gather_643_input_weight = Tensor(np.array(0))
self.gather_643_axis = 1
self.gather_643 = P.Gather()
self.dense_644 = nn.Dense(in_channels=768, out_channels=768, has_bias=True)
self.tanh_645 = nn.Tanh()
def construct(self, input_ids, token_type_ids, attention_mask):
"""construct function"""
input_ids = P.Cast()(input_ids, mstype.int32)
token_type_ids = P.Cast()(token_type_ids, mstype.int32)
attention_mask = P.Cast()(attention_mask, mstype.int32)
opt_expanddims_0 = self.expanddims_0(attention_mask, self.expanddims_0_axis)
opt_expanddims_3 = self.expanddims_3(opt_expanddims_0, self.expanddims_3_axis)
opt_cast_5 = self.cast_5(opt_expanddims_3, self.cast_5_to)
opt_sub_7 = self.sub_7(self.sub_7_bias, opt_cast_5)
opt_mul_9 = self.mul_9(opt_sub_7, self.mul_9_w)
opt_gather_1_axis = self.gather_1_axis
opt_gather_1 = self.gather_1(self.gather_1_input_weight, input_ids, opt_gather_1_axis)
opt_gather_2_axis = self.gather_2_axis
opt_gather_2 = self.gather_2(self.gather_2_input_weight, token_type_ids, opt_gather_2_axis)
opt_add_4 = self.add_4(opt_gather_1, opt_gather_2)
opt_add_6 = self.add_6(opt_add_4, self.add_6_bias)
layernorm1_0_opt = self.layernorm1_0(opt_add_6)
module50_0_opt = self.module50_0(layernorm1_0_opt, opt_mul_9)
module50_1_opt = self.module50_1(module50_0_opt, opt_mul_9)
module50_2_opt = self.module50_2(module50_1_opt, opt_mul_9)
opt_gather_643_axis = self.gather_643_axis
opt_gather_643 = self.gather_643(module50_2_opt, self.gather_643_input_weight, opt_gather_643_axis)
opt_dense_644 = self.dense_644(opt_gather_643)
opt_tanh_645 = self.tanh_645(opt_dense_644)
return opt_tanh_645

View File

@ -0,0 +1,62 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Retriever Utils.
"""
import json
import unicodedata
import pickle as pkl
def normalize(text):
"""normalize text"""
text = unicodedata.normalize('NFD', text)
return text[0].capitalize() + text[1:]
def read_query(config):
"""get query data"""
with open(config.dev_data_path, 'rb') as f:
temp_dic = pkl.load(f, encoding='gbk')
queries = []
for item in temp_dic:
queries.append(temp_dic[item]["query"])
return queries
def split_queries(config, queries):
batch_size = config.batch_size
batch_queries = [queries[i:i + batch_size] for i in range(0, len(queries), batch_size)]
return batch_queries
def save_json(obj, path, name):
with open(path + name, "w") as f:
return json.dump(obj, f)
def get_new_title(title):
"""get new title"""
if title[-2:] == "_0":
return normalize(title[:-2]) + "_0"
return normalize(title) + "_0"
def get_raw_title(title):
"""get raw title"""
if title[-2:] == "_0":
return title[:-2]
return title