!45623 [MS][OP]move to the right place
Merge pull request !45623 from mengyuanli/export_init
This commit is contained in:
commit
e85693d49c
|
@ -60,7 +60,7 @@ def blackman_window(window_length, periodic=True, *, dtype=None):
|
|||
ValueError: If the dimension of `window_length` is not 0.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``CPU`` ``GPU``
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> window_length = Tensor(10, mindspore.int32)
|
||||
|
|
|
@ -113,7 +113,7 @@ from .nn_ops import (LSTM, SGD, Adam, AdamWeightDecay, FusedSparseAdam, FusedSpa
|
|||
PSROIPooling, Dilation2D, DataFormatVecPermute, DeformableOffsets, FractionalAvgPool,
|
||||
FractionalMaxPool, FractionalMaxPool3DWithFixedKsize, FractionalMaxPoolWithFixedKsize,
|
||||
GridSampler2D, TripletMarginLoss, UpsampleNearest3D, UpsampleTrilinear3D)
|
||||
from .other_ops import (Assign, IOU, BartlettWindow, BlackmanWindow, BoundingBoxDecode, BoundingBoxEncode,
|
||||
from .other_ops import (Assign, IOU, BoundingBoxDecode, BoundingBoxEncode,
|
||||
ConfusionMatrix, UpdateState, Load, StopGradient,
|
||||
CheckValid, Partial, Depend, identity, Push, Pull, PyFunc, _DynamicLossScale,
|
||||
SampleDistortedBoundingBoxV2)
|
||||
|
@ -123,6 +123,7 @@ from .random_ops import (RandomChoiceWithMask, StandardNormal, Gamma, RandomGamm
|
|||
ParameterizedTruncatedNormal, RandomPoisson)
|
||||
from .rl_ops import (BufferAppend, BufferGetItem, BufferSample)
|
||||
from .sparse_ops import (SparseToDense, SparseTensorDenseMatmul, SparseTensorDenseAdd)
|
||||
from .spectral_ops import (BartlettWindow, BlackmanWindow)
|
||||
|
||||
__all__ = [
|
||||
'HSVToRGB',
|
||||
|
|
|
@ -7998,7 +7998,7 @@ class CTCLossV2(Primitive):
|
|||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, blank, reduction="none", zero_infinity=False):
|
||||
def __init__(self, blank=0, reduction="none", zero_infinity=False):
|
||||
"""Initialize CTCLossV2"""
|
||||
self.init_prim_io_names(inputs=["log_probs", "targets", "input_lengths", "target_lengths"],
|
||||
outputs=["neg_log_likelihood", "log_alpha"])
|
||||
|
|
|
@ -154,33 +154,6 @@ class BoundingBoxEncode(PrimitiveWithInfer):
|
|||
validator.check_equal_int(len(stds), 4, "stds len", self.name)
|
||||
|
||||
|
||||
class BartlettWindow(Primitive):
|
||||
r"""
|
||||
Bartlett window function.
|
||||
|
||||
Refer to :func:`mindspore.ops.bartlett_window` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``GPU``
|
||||
|
||||
Examples:
|
||||
>>> window_length = Tensor(5, mstype.int32)
|
||||
>>> bartlett_window = ops.BartlettWindow(periodic=True, dtype=mstype.float32)
|
||||
>>> output = bartlett_window(window_length)
|
||||
>>> print(output)
|
||||
[0. 0.4 0.8 0.8 0.4]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, periodic=True, dtype=mstype.float32):
|
||||
"""Initialize BartlettWindow"""
|
||||
self.add_prim_attr("max_length", 1000000)
|
||||
validator.check_value_type("periodic", periodic, [bool], self.name)
|
||||
validator.check_value_type("dtype", dtype, [mstype.Type], self.name)
|
||||
valid_values = (mstype.float16, mstype.float32, mstype.float64)
|
||||
validator.check_type_name("dtype", dtype, valid_values, self.name)
|
||||
|
||||
|
||||
class BoundingBoxDecode(Primitive):
|
||||
"""
|
||||
Decodes bounding boxes locations.
|
||||
|
@ -824,64 +797,3 @@ class PyFunc(PrimitiveWithInfer):
|
|||
logger.warning("The function output are empty tuple. Add a placeholder instead. "
|
||||
"Do not use it as it could be any uninitialized data.")
|
||||
return (mstype.int32,)
|
||||
|
||||
|
||||
class BlackmanWindow(Primitive):
|
||||
r"""
|
||||
Blackman window function.
|
||||
|
||||
The input "window_length" is a tensor that datatype must be a integer, which
|
||||
controlling the returned window size. In particular, If "window_length" =1,
|
||||
the returned window contains a single value 1.
|
||||
Attr "periodic" determines whether the returned window trims off the last duplicate value
|
||||
from the symmetric window and is ready to be used as a periodic window with functions.
|
||||
Therefore, if attr "periodic" is true, the "N" in formula is in fact "window_length" + 1.
|
||||
|
||||
.. math::
|
||||
|
||||
w[n] = 0.42 - 0.5 cos(\frac{2\pi n}{N - 1}) + 0.08 cos(\frac{4\pi n}{N - 1})
|
||||
|
||||
\text{where : N is the full window size.}
|
||||
|
||||
Args:
|
||||
periodic (bool): If True, returns a window to be used as periodic function.
|
||||
If False, return a symmetric window. Default: True.
|
||||
dtype (mindspore.dtype): the desired data type of returned tensor.
|
||||
Only float16, float32 and float64 is allowed. Default: mindspore.float32.
|
||||
|
||||
Inputs:
|
||||
- **window_length** (Tensor) - the size of returned window, with data type int32, int64.
|
||||
The input data should be an integer with a value of [0, 1000000].
|
||||
|
||||
Outputs:
|
||||
A 1-D tensor of size "window_length" containing the window. Its datatype is set by the attr 'dtype'.
|
||||
|
||||
Raises:
|
||||
TypeError: If "window_length" is not a Tensor.
|
||||
TypeError: If "periodic" is not a bool.
|
||||
TypeError: If "dtype" is not one of: float16, float32, float64.
|
||||
TypeError: If the type of "window_length" is not one of: int32, int64.
|
||||
ValueError: If the value range of "window_length" is not [0,1000000].
|
||||
ValueError: If the dimension of "window_length" is not 0.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> window_length = Tensor(10, mindspore.int32)
|
||||
>>> blackman_window = ops.BlackmanWindow(periodic = True, dtype = mindspore.float32)
|
||||
>>> output = blackman_window(window_length)
|
||||
>>> print(output)
|
||||
[-2.9802322e-08 4.0212840e-02 2.0077014e-01 5.0978714e-01
|
||||
8.4922993e-01 1.0000000e+00 8.4922981e-01 5.0978690e-01
|
||||
2.0077008e-01 4.0212870e-02]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, periodic=True, dtype=mstype.float32):
|
||||
"""Initialize BlackmanWindow"""
|
||||
self.add_prim_attr("max_length", 1000000)
|
||||
validator.check_value_type("periodic", periodic, [bool], self.name)
|
||||
validator.check_value_type("dtype", dtype, [mstype.Type], self.name)
|
||||
valid_values = (mstype.float16, mstype.float32, mstype.float64)
|
||||
validator.check_type_name("dtype", dtype, valid_values, self.name)
|
||||
|
|
|
@ -0,0 +1,75 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Spectral operators."""
|
||||
from mindspore._checkparam import Validator as validator
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.ops.primitive import Primitive, prim_attr_register
|
||||
|
||||
|
||||
class BartlettWindow(Primitive):
|
||||
r"""
|
||||
Bartlett window function.
|
||||
|
||||
Refer to :func:`mindspore.ops.bartlett_window` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``GPU``
|
||||
|
||||
Examples:
|
||||
>>> window_length = Tensor(5, mstype.int32)
|
||||
>>> bartlett_window = ops.BartlettWindow(periodic=True, dtype=mstype.float32)
|
||||
>>> output = bartlett_window(window_length)
|
||||
>>> print(output)
|
||||
[0. 0.4 0.8 0.8 0.4]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, periodic=True, dtype=mstype.float32):
|
||||
"""Initialize BartlettWindow"""
|
||||
self.add_prim_attr("max_length", 1000000)
|
||||
validator.check_value_type("periodic", periodic, [bool], self.name)
|
||||
validator.check_value_type("dtype", dtype, [mstype.Type], self.name)
|
||||
valid_values = (mstype.float16, mstype.float32, mstype.float64)
|
||||
validator.check_type_name("dtype", dtype, valid_values, self.name)
|
||||
|
||||
|
||||
class BlackmanWindow(Primitive):
|
||||
r"""
|
||||
Blackman window function.
|
||||
|
||||
Refer to :func:`mindspore.ops.blackman_window` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> window_length = Tensor(10, mindspore.int32)
|
||||
>>> blackman_window = ops.BlackmanWindow(periodic = True, dtype = mindspore.float32)
|
||||
>>> output = blackman_window(window_length)
|
||||
>>> print(output)
|
||||
[-2.9802322e-08 4.0212840e-02 2.0077014e-01 5.0978714e-01
|
||||
8.4922993e-01 1.0000000e+00 8.4922981e-01 5.0978690e-01
|
||||
2.0077008e-01 4.0212870e-02]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, periodic=True, dtype=mstype.float32):
|
||||
"""Initialize BlackmanWindow"""
|
||||
self.add_prim_attr("max_length", 1000000)
|
||||
validator.check_value_type("periodic", periodic, [bool], self.name)
|
||||
validator.check_value_type("dtype", dtype, [mstype.Type], self.name)
|
||||
valid_values = (mstype.float16, mstype.float32, mstype.float64)
|
||||
validator.check_type_name("dtype", dtype, valid_values, self.name)
|
|
@ -17,7 +17,7 @@ import torch
|
|||
import pytest
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.ops.operations.other_ops as P
|
||||
import mindspore.ops.operations.spectral_ops as P
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.common.api import jit
|
||||
|
|
|
@ -18,7 +18,7 @@ import pytest
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore.ops import functional as F
|
||||
import mindspore.ops.operations.other_ops as P
|
||||
import mindspore.ops.operations.spectral_ops as P
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.common.api import jit
|
||||
|
|
|
@ -140,7 +140,7 @@ from mindspore.nn.loss.loss import MultiMarginLoss
|
|||
from mindspore.nn.loss.loss import MultilabelMarginLoss
|
||||
from mindspore.nn.loss.loss import TripletMarginLoss
|
||||
from mindspore.ops.operations.array_ops import Mvlgamma
|
||||
from mindspore.ops.operations.other_ops import BartlettWindow
|
||||
from mindspore.ops.operations.spectral_ops import BartlettWindow
|
||||
from mindspore.ops.operations.nn_ops import SparseSoftmaxCrossEntropyWithLogitsV2
|
||||
from mindspore.ops.operations.nn_ops import NthElement
|
||||
from mindspore.ops.operations.nn_ops import Pdist
|
||||
|
@ -188,7 +188,7 @@ from mindspore.ops.operations.sparse_ops import SparseSegmentMeanWithNumSegments
|
|||
from mindspore.ops.operations.sparse_ops import SparseSlice
|
||||
from mindspore.ops.operations.sparse_ops import SparseFillEmptyRows
|
||||
from mindspore.ops.operations._grad_ops import SparseSliceGrad
|
||||
from mindspore.ops.operations.other_ops import BlackmanWindow
|
||||
from mindspore.ops.operations.spectral_ops import BlackmanWindow
|
||||
from mindspore.ops.operations.nn_ops import SparseApplyCenteredRMSProp
|
||||
from mindspore.ops.operations.nn_ops import SparseApplyProximalGradientDescent
|
||||
from mindspore.ops.operations.sparse_ops import SparseReshape
|
||||
|
|
Loading…
Reference in New Issue