!4219 Add Unique CPU kernel
Merge pull request !4219 from huanghui/add-op-unique
This commit is contained in:
commit
e509f87f7f
|
@ -0,0 +1,78 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/cpu/unique_cpu_kernel.h"
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
void UniqueCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
CheckParam(kernel_node);
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
n_ = input_shape[0];
|
||||
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
|
||||
}
|
||||
|
||||
bool UniqueCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
if (dtype_ == kNumberTypeInt32) {
|
||||
LaunchKernel<int>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeFloat32) {
|
||||
LaunchKernel<float>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeInt64) {
|
||||
LaunchKernel<int64_t>(inputs, outputs);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void UniqueCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) {
|
||||
auto x_addr = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
auto y_addr = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
auto idx_addr = reinterpret_cast<int *>(outputs[1]->addr);
|
||||
|
||||
std::unordered_map<T, int> uniq;
|
||||
int n = SizeToInt(n_);
|
||||
uniq.reserve(n * 2);
|
||||
for (int i = 0, j = 0; i < n; ++i) {
|
||||
auto it = uniq.emplace(x_addr[i], j);
|
||||
idx_addr[i] = it.first->second;
|
||||
if (it.second) {
|
||||
++j;
|
||||
}
|
||||
}
|
||||
for (const auto &it : uniq) {
|
||||
y_addr[it.second] = it.first;
|
||||
}
|
||||
}
|
||||
|
||||
void UniqueCPUKernel::CheckParam(const CNodePtr &kernel_node) {
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
if (input_shape.size() != 1) {
|
||||
MS_LOG(EXCEPTION) << "Input dims is " << input_shape.size() << ", but UniqueCPUKernel only support 1d.";
|
||||
}
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 1) {
|
||||
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but UniqueCPUKernel needs 1 input.";
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 2) {
|
||||
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but UniqueCPUKernel needs 2 output.";
|
||||
}
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,61 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UNIQUE_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UNIQUE_CPU_KERNEL_H_
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class UniqueCPUKernel : public CPUKernel {
|
||||
public:
|
||||
UniqueCPUKernel() = default;
|
||||
~UniqueCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
template <typename T>
|
||||
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
|
||||
|
||||
private:
|
||||
void CheckParam(const CNodePtr &kernel_node);
|
||||
size_t n_;
|
||||
TypeId dtype_;
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
Unique, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
UniqueCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
Unique, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt32),
|
||||
UniqueCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
Unique,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeInt32),
|
||||
UniqueCPUKernel);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UNIQUE_CPU_KERNEL_H_
|
|
@ -0,0 +1,47 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.uniq = P.Unique()
|
||||
|
||||
def construct(self, x):
|
||||
return self.uniq(x)
|
||||
|
||||
|
||||
def test_net():
|
||||
x = Tensor(np.array([1, 2, 5, 2]), mstype.float32)
|
||||
uniq = Net()
|
||||
output = uniq(x)
|
||||
print("x:\n", x)
|
||||
print("y:\n", output[0])
|
||||
print("idx:\n", output[1])
|
||||
expect_y_result = [1., 2., 5.]
|
||||
expect_idx_result = [0, 1, 2, 1]
|
||||
|
||||
assert (output[0].asnumpy() == expect_y_result).all()
|
||||
assert (output[1].asnumpy() == expect_idx_result).all()
|
|
@ -128,6 +128,7 @@ file(GLOB_RECURSE MINDSPORE_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR}
|
|||
"../../../mindspore/ccsrc/backend/kernel_compiler/cpu/sparse_apply_ftrl_cpu_kernel.cc"
|
||||
"../../../mindspore/ccsrc/backend/kernel_compiler/cpu/sparse_apply_lazy_adam_cpu_kernel.cc"
|
||||
"../../../mindspore/ccsrc/backend/kernel_compiler/cpu/sparse_apply_proximal_adagrad_cpu_kernel.cc"
|
||||
"../../../mindspore/ccsrc/backend/kernel_compiler/cpu/unique_cpu_kernel.cc"
|
||||
)
|
||||
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Windows")
|
||||
|
|
|
@ -0,0 +1,76 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <vector>
|
||||
#include "common/common_test.h"
|
||||
#define private public
|
||||
#define protected public
|
||||
#include "backend/kernel_compiler/cpu/unique_cpu_kernel.h"
|
||||
#undef private
|
||||
#undef protected
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class UniqueCpuKernelTest : public UT::Common {
|
||||
public:
|
||||
UniqueCpuKernelTest() : unique_(std::make_shared<UniqueCPUKernel>()) {}
|
||||
|
||||
void SetUp() override {
|
||||
unique_->n_ = 9;
|
||||
unique_->dtype_ = kNumberTypeFloat32;
|
||||
inputs_.clear();
|
||||
workspace_.clear();
|
||||
outputs_.clear();
|
||||
}
|
||||
|
||||
AddressPtr CreateKernelAddress(void *addr) {
|
||||
auto kernel_addr = std::make_shared<Address>();
|
||||
kernel_addr->addr = addr;
|
||||
return kernel_addr;
|
||||
}
|
||||
|
||||
void CreateInputAddress() { inputs_.push_back(CreateKernelAddress(x_.data())); }
|
||||
|
||||
void CreateOutputAddress() {
|
||||
outputs_.push_back(CreateKernelAddress(y_.data()));
|
||||
outputs_.push_back(CreateKernelAddress(idx_.data()));
|
||||
}
|
||||
|
||||
std::vector<float> x_;
|
||||
std::vector<float> y_;
|
||||
std::vector<int> idx_;
|
||||
std::vector<AddressPtr> inputs_;
|
||||
std::vector<AddressPtr> workspace_;
|
||||
std::vector<AddressPtr> outputs_;
|
||||
std::shared_ptr<UniqueCPUKernel> unique_;
|
||||
};
|
||||
|
||||
TEST_F(UniqueCpuKernelTest, compute_test) {
|
||||
x_ = {1, 1, 2, 4, 4, 4, 7, 8, 8};
|
||||
y_ = {1, 1, 1, 1, 1};
|
||||
idx_ = {1, 1, 1, 1, 1, 1, 1, 1, 1};
|
||||
CreateInputAddress();
|
||||
CreateOutputAddress();
|
||||
unique_->Launch(inputs_, workspace_, outputs_);
|
||||
|
||||
// check compute result
|
||||
std::vector<float> expect_y{1, 2, 4, 7, 8};
|
||||
std::vector<int> expect_idx{0, 0, 1, 2, 2, 2, 3, 4, 4};
|
||||
EXPECT_TRUE(y_ == expect_y);
|
||||
EXPECT_TRUE(idx_ == expect_idx);
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
Loading…
Reference in New Issue