!10389 Fix the Backward of the AllSwap Operation
From: @huangxinjing Reviewed-by: @stsuteng,@stsuteng,@zhunaipan Signed-off-by: @stsuteng,@stsuteng
This commit is contained in:
commit
e1248a7246
|
@ -183,11 +183,11 @@ def get_bprop_allswap(self):
|
|||
all_swap_grad = AllSwap(self.group)
|
||||
if self.instance_name:
|
||||
instance_name = "grad" + self.instance_name
|
||||
all_to_all_grad.set_prim_instance_name(instance_name)
|
||||
all_swap_grad.set_prim_instance_name(instance_name)
|
||||
|
||||
def bprop(x, send_size, recv_size, out, dout):
|
||||
dx = all_swap_grad(dout, recv_size, send_size)
|
||||
return (dx,)
|
||||
return (dx, zeros_like(send_size), zeros_like(recv_size))
|
||||
|
||||
return bprop
|
||||
|
||||
|
|
|
@ -27,7 +27,7 @@ from mindspore.nn import ReLU
|
|||
from mindspore.nn import TrainOneStepCell, WithLossCell
|
||||
from mindspore.ops.operations.comm_ops import AllReduce, AllGather, _AlltoAll, ReduceOp, ReduceScatter
|
||||
from mindspore.ops.operations.comm_ops import Broadcast, AllSwap
|
||||
from mindspore.ops.operations.math_ops import ReduceSum
|
||||
from mindspore.ops.operations.array_ops import GatherV2
|
||||
import mindspore
|
||||
|
||||
# pylint: disable=W0212
|
||||
|
@ -127,14 +127,15 @@ class AllSwapNet(nn.Cell):
|
|||
self.dense = Dense(input_channel, out_channel)
|
||||
self.allswap = AllSwap()
|
||||
self.relu = ReLU()
|
||||
self.reduce = ReduceSum()
|
||||
part_slice = batch_size / 2
|
||||
self.send_size = Tensor([0, part_slice*out_channel, part_slice*out_channel], mindspore.int64)
|
||||
self.recv_size = Tensor([part_slice*out_channel, part_slice*out_channel, 0], mindspore.int64)
|
||||
self.gatherv2 = GatherV2()
|
||||
self.input = Tensor(np.ones([1]), mindspore.int32)
|
||||
def construct(self, x):
|
||||
x = self.dense(x)
|
||||
x = self.allswap(x, self.send_size, self.recv_size)
|
||||
x = self.relu(x)
|
||||
x = self.gatherv2(x, self.input, 0)
|
||||
return x
|
||||
|
||||
|
||||
|
@ -180,8 +181,15 @@ def test_allswap():
|
|||
"""run_allswap"""
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
input_tensor = Tensor(np.ones((100, 20)), dtype=mindspore.float32)
|
||||
label_tensor = Tensor(np.ones((1, 20)), dtype=mindspore.float32)
|
||||
network = AllSwapNet(100, 20, 20)
|
||||
_executor.compile(network, input_tensor)
|
||||
loss_fn = nn.SoftmaxCrossEntropyWithLogits()
|
||||
optimizer = Momentum(filter(lambda x: x.requires_grad, network.get_parameters()),
|
||||
learning_rate=0.1,
|
||||
momentum=0.9)
|
||||
network = WithLossCell(network, loss_fn)
|
||||
network = TrainOneStepCell(network, optimizer)
|
||||
_executor.compile(network, input_tensor, label_tensor)
|
||||
|
||||
|
||||
def run_reducescatter(op):
|
||||
|
|
Loading…
Reference in New Issue