!39170 Update argmin with value tensor api name
Merge pull request !39170 from ZPaC/update-argmin-with-value-name
This commit is contained in:
commit
dd5391af5d
|
@ -540,7 +540,7 @@ def argmax(x, axis=None):
|
||||||
return P.Argmax(axis)(x)
|
return P.Argmax(axis)(x)
|
||||||
|
|
||||||
|
|
||||||
def arg_min_with_value(x, axis=0, keep_dims=False):
|
def argmin_with_value(x, axis=0, keep_dims=False):
|
||||||
"""
|
"""
|
||||||
Calculates the minimum value with corresponding index, and returns indices and values.
|
Calculates the minimum value with corresponding index, and returns indices and values.
|
||||||
|
|
||||||
|
|
|
@ -2180,7 +2180,7 @@ class Tensor(Tensor_):
|
||||||
# P.Argmin is currently not supported
|
# P.Argmin is currently not supported
|
||||||
return tensor_operator_registry.get('argmax')(axis)(tensor_operator_registry.get('__neg__')(a))
|
return tensor_operator_registry.get('argmax')(axis)(tensor_operator_registry.get('__neg__')(a))
|
||||||
|
|
||||||
def arg_min_with_value(self, axis=0, keep_dims=False):
|
def argmin_with_value(self, axis=0, keep_dims=False):
|
||||||
"""
|
"""
|
||||||
Returns the minimum value with corresponding index.
|
Returns the minimum value with corresponding index.
|
||||||
|
|
||||||
|
@ -2215,15 +2215,15 @@ class Tensor(Tensor_):
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> x = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), mindspore.float32)
|
>>> x = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), mindspore.float32)
|
||||||
>>> output = x.arg_min_with_value()
|
>>> output = x.argmin_with_value()
|
||||||
>>> print(output)
|
>>> print(output)
|
||||||
0 0.0
|
0 0.0
|
||||||
>>> output = x.arg_min_with_value(keep_dims=True)
|
>>> output = x.argmin_with_value(keep_dims=True)
|
||||||
>>> print(output)
|
>>> print(output)
|
||||||
[0] [0.0]
|
[0] [0.0]
|
||||||
"""
|
"""
|
||||||
self._init_check()
|
self._init_check()
|
||||||
return tensor_operator_registry.get('arg_min_with_value')(self, axis, keep_dims)
|
return tensor_operator_registry.get('argmin_with_value')(self, axis, keep_dims)
|
||||||
|
|
||||||
def cumsum(self, axis=None, dtype=None):
|
def cumsum(self, axis=None, dtype=None):
|
||||||
"""
|
"""
|
||||||
|
|
|
@ -890,7 +890,7 @@ tensor_operator_registry.register('norm', norm)
|
||||||
tensor_operator_registry.register('renorm', renorm)
|
tensor_operator_registry.register('renorm', renorm)
|
||||||
tensor_operator_registry.register('adaptive_max_pool2d', AdaptiveMaxPool2D)
|
tensor_operator_registry.register('adaptive_max_pool2d', AdaptiveMaxPool2D)
|
||||||
tensor_operator_registry.register('coalesce', coalesce)
|
tensor_operator_registry.register('coalesce', coalesce)
|
||||||
tensor_operator_registry.register('arg_min_with_value', min)
|
tensor_operator_registry.register('argmin_with_value', min)
|
||||||
tensor_operator_registry.register('coo_add', sparse_add)
|
tensor_operator_registry.register('coo_add', sparse_add)
|
||||||
tensor_operator_registry.register('top_k', P.TopK)
|
tensor_operator_registry.register('top_k', P.TopK)
|
||||||
__all__ = [name for name in dir() if name[0] != "_"]
|
__all__ = [name for name in dir() if name[0] != "_"]
|
||||||
|
|
|
@ -2161,7 +2161,7 @@ class ArgMinWithValue(Primitive):
|
||||||
- If there are multiple minimum values, the index of the first minimum value is used.
|
- If there are multiple minimum values, the index of the first minimum value is used.
|
||||||
- The value range of "axis" is [-dims, dims - 1]. "dims" is the dimension length of "x".
|
- The value range of "axis" is [-dims, dims - 1]. "dims" is the dimension length of "x".
|
||||||
|
|
||||||
Also see: func: `mindspore.ops.arg_min_with_value`.
|
Also see: func: `mindspore.ops.min`.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
axis (int): The dimension to reduce. Default: 0.
|
axis (int): The dimension to reduce. Default: 0.
|
||||||
|
|
|
@ -109,7 +109,7 @@ def argminwithvalue_tensor(context_mode, np_type):
|
||||||
[67., 8., 9.],
|
[67., 8., 9.],
|
||||||
[130., 24., 15.],
|
[130., 24., 15.],
|
||||||
[0.3, -0.4, -15.]]).astype(np_type))
|
[0.3, -0.4, -15.]]).astype(np_type))
|
||||||
return x.arg_min_with_value(axis=-1)
|
return x.argmin_with_value(axis=-1)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.level1
|
@pytest.mark.level1
|
||||||
|
@ -184,7 +184,7 @@ def test_argminwithvalue_functional():
|
||||||
@pytest.mark.env_onecard
|
@pytest.mark.env_onecard
|
||||||
def test_argminwithvalue_tensor():
|
def test_argminwithvalue_tensor():
|
||||||
"""
|
"""
|
||||||
Feature: support tensor's arg_min_with_value op.
|
Feature: support tensor's argmin_with_value op.
|
||||||
Description: test the op using tensor.
|
Description: test the op using tensor.
|
||||||
Expectation: expect correct result.
|
Expectation: expect correct result.
|
||||||
"""
|
"""
|
||||||
|
@ -210,7 +210,7 @@ def test_argminwithvalue_tensor():
|
||||||
@pytest.mark.env_onecard
|
@pytest.mark.env_onecard
|
||||||
def test_argminwithvalue_dynamic_shape():
|
def test_argminwithvalue_dynamic_shape():
|
||||||
"""
|
"""
|
||||||
Feature: support arg_min_with_value op with dynamic shape.
|
Feature: support argmin_with_value op with dynamic shape.
|
||||||
Description: test the op with dynamic shape
|
Description: test the op with dynamic shape
|
||||||
Expectation: expect correct result.
|
Expectation: expect correct result.
|
||||||
"""
|
"""
|
||||||
|
|
Loading…
Reference in New Issue