diff --git a/mindspore/python/mindspore/ops/composite/math_ops.py b/mindspore/python/mindspore/ops/composite/math_ops.py index 7c1ae292289..45215270cf5 100644 --- a/mindspore/python/mindspore/ops/composite/math_ops.py +++ b/mindspore/python/mindspore/ops/composite/math_ops.py @@ -364,8 +364,8 @@ def dot(x1, x2): ``Ascend`` ``GPU`` ``CPU`` Examples: - >>> from mindspore import Tensor, ops >>> import mindspore + >>> from mindspore import Tensor, ops >>> input_x1 = Tensor(np.ones(shape=[2, 3]), mindspore.float32) >>> input_x2 = Tensor(np.ones(shape=[1, 3, 2]), mindspore.float32) >>> output = ops.dot(input_x1, input_x2) diff --git a/mindspore/python/mindspore/ops/function/image_func.py b/mindspore/python/mindspore/ops/function/image_func.py index ebffd177314..14be9d8d852 100644 --- a/mindspore/python/mindspore/ops/function/image_func.py +++ b/mindspore/python/mindspore/ops/function/image_func.py @@ -198,7 +198,7 @@ def crop_and_resize(image, boxes, box_indices, crop_size, method="bilinear", ext >>> boxes = np.random.uniform(size=[NUM_BOXES, 4]).astype(np.float32) >>> box_indices = np.random.uniform(size=[NUM_BOXES], low=0, high=BATCH_SIZE).astype(np.int32) >>> crop_size = (24, 24) - >>> output = F.crop_and_resize(Tensor(image), Tensor(boxes), Tensor(box_indices), crop_size) + >>> output = ops.crop_and_resize(Tensor(image), Tensor(boxes), Tensor(box_indices), crop_size) >>> print(output.shape) (5, 24, 24, 3) """ diff --git a/mindspore/python/mindspore/ops/function/math_func.py b/mindspore/python/mindspore/ops/function/math_func.py index e6361af874a..03e42a968dd 100644 --- a/mindspore/python/mindspore/ops/function/math_func.py +++ b/mindspore/python/mindspore/ops/function/math_func.py @@ -3141,7 +3141,6 @@ def approximate_equal(x, y, tolerance=1e-5): ``Ascend`` ``GPU`` ``CPU`` Examples: - >>> import mindspore.ops as ops >>> tol = 1.5 >>> x = Tensor(np.array([1, 2, 3]), mstype.float32) >>> y = Tensor(np.array([2, 4, 6]), mstype.float32) diff --git a/mindspore/python/mindspore/ops/function/nn_func.py b/mindspore/python/mindspore/ops/function/nn_func.py index b917a39fbca..2b60066fe5f 100644 --- a/mindspore/python/mindspore/ops/function/nn_func.py +++ b/mindspore/python/mindspore/ops/function/nn_func.py @@ -3567,7 +3567,7 @@ def hinge_embedding_loss(inputs, targets, margin=1.0, reduction='mean'): Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` - Examplse: + Examples: >>> import numpy as np >>> import mindspore.common.dtype as mstype >>> import mindspore.ops as ops diff --git a/mindspore/python/mindspore/ops/function/sparse_unary_func.py b/mindspore/python/mindspore/ops/function/sparse_unary_func.py index 5f427f977bb..e572916818a 100755 --- a/mindspore/python/mindspore/ops/function/sparse_unary_func.py +++ b/mindspore/python/mindspore/ops/function/sparse_unary_func.py @@ -45,7 +45,6 @@ def csr_cos(x: CSRTensor) -> CSRTensor: ``Ascend`` ``GPU`` ``CPU`` Examples: - >>> from mindspore import ops, Tensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) @@ -298,7 +297,6 @@ def coo_inv(x: COOTensor) -> COOTensor: ``Ascend`` ``GPU`` ``CPU`` Examples: - >>> from mindspore import ops, Tensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) @@ -341,7 +339,6 @@ def csr_relu(x: CSRTensor) -> CSRTensor: ``Ascend`` ``GPU`` ``CPU`` Examples: - >>> from mindspore import ops, Tensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) @@ -458,7 +455,6 @@ def coo_expm1(x: COOTensor) -> COOTensor: ``Ascend`` ``GPU`` ``CPU`` Examples: - >>> from mindspore import ops, Tensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) @@ -1732,7 +1728,6 @@ def coo_tanh(x: COOTensor) -> COOTensor: ``Ascend`` ``GPU`` ``CPU`` Examples: - >>> from mindspore import ops, Tensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) diff --git a/mindspore/python/mindspore/ops/operations/array_ops.py b/mindspore/python/mindspore/ops/operations/array_ops.py index 289038420cd..7c04e321f9e 100755 --- a/mindspore/python/mindspore/ops/operations/array_ops.py +++ b/mindspore/python/mindspore/ops/operations/array_ops.py @@ -1109,10 +1109,9 @@ class Padding(Primitive): ``Ascend`` ``GPU`` ``CPU`` Examples: - >>> from mindspore.ops.operations.array_ops import Padding >>> x = Tensor(np.array([[8], [10]]), mindspore.float32) >>> pad_dim_size = 4 - >>> output = Padding(pad_dim_size)(x) + >>> output = ops.Padding(pad_dim_size)(x) >>> print(output) [[ 8. 0. 0. 0.] [10. 0. 0. 0.]] @@ -1285,7 +1284,6 @@ class MatrixDiagV3(Primitive): ``Ascend`` ``GPU`` ``CPU`` Examples: - >>> from mindspore.ops.operations.array_ops import MatrixDiagV3 >>> x = Tensor(np.array([[8, 9, 0], ... [1, 2, 3], ... [0, 4, 5]]), mindspore.float32) @@ -1293,7 +1291,7 @@ class MatrixDiagV3(Primitive): >>> num_rows = Tensor(np.array(3), mindspore.int32) >>> num_cols = Tensor(np.array(3), mindspore.int32) >>> padding_value = Tensor(np.array(11), mindspore.float32) - >>> matrix_diag_v3 = MatrixDiagV3(align='LEFT_RIGHT') + >>> matrix_diag_v3 = ops.MatrixDiagV3(align='LEFT_RIGHT') >>> output = matrix_diag_v3(x, k, num_rows, num_cols, padding_value) >>> print(output) [[ 1. 8. 11.] @@ -1326,7 +1324,7 @@ class MatrixDiagPartV3(Primitive): ... [9, 8, 7, 6]]), mindspore.float32) >>> k =Tensor(np.array([1, 3]), mindspore.int32) >>> padding_value = Tensor(np.array(9), mindspore.float32) - >>> matrix_diag_part_v3 = ops.operations.array_ops.MatrixDiagPartV3(align='RIGHT_LEFT') + >>> matrix_diag_part_v3 = ops.MatrixDiagPartV3(align='RIGHT_LEFT') >>> output = matrix_diag_part_v3(x, k, padding_value) >>> print(output) [[9. 9. 4.] @@ -3564,13 +3562,12 @@ class DiagPart(PrimitiveWithCheck): Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` - Examples + Examples: >>> input_x = Tensor([[1, 0, 0, 0], ... [0, 2, 0, 0], ... [0, 0, 3, 0], ... [0, 0, 0, 4]]) - >>> import mindspore.ops as P - >>> diag_part = P.DiagPart() + >>> diag_part = ops.DiagPart() >>> output = diag_part(input_x) >>> print(output) [1 2 3 4] @@ -4461,7 +4458,6 @@ class ScatterMul(_ScatterOpDynamic): ``Ascend`` ``GPU`` ``CPU`` Examples: - >>> import mindspore.ops as ops >>> input_x = Parameter(Tensor(np.array([[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]), mstype.float32), name="x") >>> indices = Tensor(np.array([0, 1]), mstype.int32) >>> updates = Tensor(np.array([[2.0, 2.0, 2.0], [2.0, 2.0, 2.0]]), mstype.float32) @@ -4771,11 +4767,10 @@ class ScatterNdMul(_ScatterNdOp): ``GPU`` ``CPU`` Examples: - >>> from mindspore.ops.operations.array_ops import ScatterNdMul >>> input_x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mindspore.float32), name="x") >>> indices = Tensor(np.array([[2], [4], [1], [7]]), mindspore.int32) >>> updates = Tensor(np.array([6, 7, 8, 9]), mindspore.float32) - >>> scatter_nd_mul = ScatterNdMul() + >>> scatter_nd_mul = ops.ScatterNdMul() >>> output = scatter_nd_mul(input_x, indices, updates) >>> print(output) [ 1. 16. 18. 4. 35. 6. 7. 72.] @@ -4783,7 +4778,7 @@ class ScatterNdMul(_ScatterNdOp): >>> indices = Tensor(np.array([[0], [2]]), mindspore.int32) >>> updates = Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]], ... [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]]]), mindspore.int32) - >>> scatter_nd_mul = ScatterNdMul() + >>> scatter_nd_mul = ops.ScatterNdMul() >>> output = scatter_nd_mul(input_x, indices, updates) >>> print(output) [[[1 1 1 1] @@ -4867,11 +4862,10 @@ class ScatterNdMax(_ScatterNdOp): ``Ascend`` ``GPU`` ``CPU`` Examples: - >>> from mindspore.ops.operations.array_ops import ScatterNdMax >>> input_x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mindspore.float32), name="x") >>> indices = Tensor(np.array([[2], [4], [1], [7]]), mindspore.int32) >>> updates = Tensor(np.array([6, 7, 8, 9]), mindspore.float32) - >>> scatter_nd_max = ScatterNdMax() + >>> scatter_nd_max = ops.ScatterNdMax() >>> output = scatter_nd_max(input_x, indices, updates) >>> print(output) [ 1. 8. 6. 4. 7. 6. 7. 9.] @@ -4879,7 +4873,7 @@ class ScatterNdMax(_ScatterNdOp): >>> indices = Tensor(np.array([[0], [2]]), mindspore.int32) >>> updates = Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]], ... [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]]]), mindspore.int32) - >>> scatter_nd_max = ScatterNdMax() + >>> scatter_nd_max = ops.ScatterNdMax() >>> output = scatter_nd_max(input_x, indices, updates) >>> print(output) [[[1 1 1 1] diff --git a/mindspore/python/mindspore/ops/operations/linalg_ops.py b/mindspore/python/mindspore/ops/operations/linalg_ops.py index a1c1c6a17e4..4fd78d282ca 100644 --- a/mindspore/python/mindspore/ops/operations/linalg_ops.py +++ b/mindspore/python/mindspore/ops/operations/linalg_ops.py @@ -78,9 +78,9 @@ class Svd(Primitive): Examples: >>> import numpy as np >>> from mindspore import Tensor, set_context - >>> from mindspore.ops.operations import linalg_ops as linalg + >>> from mindspore import ops >>> set_context(device_target="CPU") - >>> svd = linalg.Svd(full_matrices=True, compute_uv=True) + >>> svd = ops.Svd(full_matrices=True, compute_uv=True) >>> a = Tensor(np.array([[1, 2], [-4, -5], [2, 1]]).astype(np.float32)) >>> s, u, v = svd(a) >>> print(s) diff --git a/mindspore/python/mindspore/ops/operations/math_ops.py b/mindspore/python/mindspore/ops/operations/math_ops.py index 06847e37ae2..59039941fe6 100644 --- a/mindspore/python/mindspore/ops/operations/math_ops.py +++ b/mindspore/python/mindspore/ops/operations/math_ops.py @@ -6146,9 +6146,10 @@ class IsClose(Primitive): ``Ascend`` ``GPU`` ``CPU`` Examples: + >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor - >>> from mindspore.ops.operations.math_ops import IsClose + >>> from mindspore.ops import IsClose >>> input = Tensor(np.array([1.3, 2.1, 3.2, 4.1, 5.1]), mindspore.float16) >>> other = Tensor(np.array([1.3, 3.3, 2.3, 3.1, 5.1]), mindspore.float16) >>> isclose = IsClose() @@ -6468,7 +6469,7 @@ class Digamma(Primitive): Examples: >>> x = Tensor(np.array([1.5, 0.5, 9]).astype(np.float16)) - >>> digamma = P.Digamma() + >>> digamma = ops.Digamma() >>> output = digamma(x) >>> print(output) [ 0.0365 -1.964 2.14 ] diff --git a/mindspore/python/mindspore/ops/operations/nn_ops.py b/mindspore/python/mindspore/ops/operations/nn_ops.py index 6eda5404a26..ffc89eaa7b3 100644 --- a/mindspore/python/mindspore/ops/operations/nn_ops.py +++ b/mindspore/python/mindspore/ops/operations/nn_ops.py @@ -1430,7 +1430,7 @@ class DataFormatVecPermute(Primitive): >>> class Net(nn.Cell): ... def __init__(self, src_format="NHWC", dst_format="NCHW"): ... super().__init__() - ... self.op = P.nn_ops.DataFormatVecPermute(src_format, dst_format) + ... self.op = ops.DataFormatVecPermute(src_format, dst_format) ... def construct(self, x): ... return self.op(x) ... @@ -3097,9 +3097,9 @@ class L2Loss(Primitive): Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` - Examples + Examples: >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float16) - >>> l2_loss = L2Loss() + >>> l2_loss = ops.L2Loss() >>> output = l2_loss(input_x) >>> print(output) 7.0 @@ -6976,8 +6976,7 @@ class Dropout2D(PrimitiveWithInfer): ``Ascend`` ``GPU`` ``CPU`` Examples: - >>> from mindspore.ops.operations.nn_ops import Dropout2D - >>> dropout = Dropout2D(keep_prob=0.5) + >>> dropout = ops.Dropout2D(keep_prob=0.5) >>> x = Tensor(np.ones([2, 1, 2, 3]), mindspore.float32) >>> output, mask = dropout(x) >>> print(output.shape)