!4721 [MS][LITE]malloc buffer using memory pool

Merge pull request !4721 from fuzhiye/tmp
This commit is contained in:
mindspore-ci-bot 2020-08-19 17:35:25 +08:00 committed by Gitee
commit d921d853b1
21 changed files with 739 additions and 623 deletions

View File

@ -93,6 +93,18 @@ int ConvolutionBaseCPUKernel::Init() {
return RET_OK;
}
int ConvolutionBaseCPUKernel::CheckResizeValid() {
// ===============check in channel================= //
auto filter_tensor = in_tensors_.at(kWeightIndex);
auto filter_in_channel = filter_tensor->Channel();
int resize_in_channel = in_tensors_.at(kInputIndex)->Channel();
if (filter_in_channel != resize_in_channel) {
MS_LOG(ERROR) << "Channel of resized input should be equal to in channel of filter.";
return RET_ERROR;
}
return RET_OK;
}
int ConvolutionBaseCPUKernel::CheckLayout(lite::tensor::Tensor *input_tensor) {
auto data_type = input_tensor->data_type();
auto input_format = input_tensor->GetFormat();

View File

@ -58,6 +58,7 @@ class ConvolutionBaseCPUKernel : public LiteKernel {
int SetFilterTensorQuantParam();
int SetOutputTensorQuantParam();
int SetQuantMultiplier();
int CheckResizeValid();
void FreeQuantParam();
protected:

View File

@ -50,11 +50,14 @@ void ProcessFilterFp16(float16_t *origin_weight, float16_t *dst_weight, ConvPara
}
int Convolution3x3FP16CPUKernel::InitWeightBias() {
auto input_channel = conv_param_->input_channel_;
int output_channel = conv_param_->output_channel_;
auto filter_tensor = in_tensors_.at(kWeightIndex);
auto input_channel = filter_tensor->Channel();
auto output_channel = filter_tensor->Batch();
conv_param_->input_channel_ = input_channel;
conv_param_->output_channel_ = output_channel;
int iC8 = UP_DIV(input_channel, C8NUM);
int oC8 = UP_DIV(output_channel, C8NUM);
// init weight
// ===========================init weight========================== //
size_t transformed_size = iC8 * C8NUM * oC8 * C8NUM * 36 * sizeof(float16_t);
transformed_filter_addr_ = reinterpret_cast<float16_t *>(malloc(transformed_size));
if (transformed_filter_addr_ == nullptr) {
@ -69,7 +72,7 @@ int Convolution3x3FP16CPUKernel::InitWeightBias() {
}
ProcessFilterFp16(execute_weight_, transformed_filter_addr_, conv_param_);
// init bias
// =============================init bias========================= //
size_t new_bias_size = oC8 * C8NUM * sizeof(float16_t);
bias_data_ = malloc(new_bias_size);
if (bias_data_ == nullptr) {
@ -92,55 +95,32 @@ int Convolution3x3FP16CPUKernel::InitWeightBias() {
int Convolution3x3FP16CPUKernel::InitTmpBuffer() {
const int tile_num = 16;
const int k_plane = 36;
int iC8 = UP_DIV(conv_param_->input_channel_, C8NUM);
int oC8 = UP_DIV(conv_param_->output_channel_, C8NUM);
/*=============================tile_buffer_============================*/
size_t tile_buffer_size = thread_count_ * tile_num * k_plane * iC8 * C8NUM * sizeof(float16_t);
tile_buffer_ = reinterpret_cast<float16_t *>(malloc(tile_buffer_size));
if (tile_buffer_ == nullptr) {
MS_LOG(ERROR) << "malloc tile_buffer_ failed.";
return RET_ERROR;
}
memset(tile_buffer_, 0, tile_buffer_size);
MS_ASSERT(ctx_->allocator != nullptr);
/*=============================block_unit_buffer_============================*/
size_t block_unit_buffer_size = thread_count_ * k_plane * C8NUM * sizeof(float16_t);
block_unit_buffer_ = reinterpret_cast<float16_t *>(malloc(block_unit_buffer_size));
block_unit_buffer_ = reinterpret_cast<float16_t *>(ctx_->allocator->Malloc(block_unit_buffer_size));
if (block_unit_buffer_ == nullptr) {
MS_LOG(ERROR) << "malloc block_unit_buffer_ failed.";
return RET_ERROR;
}
memset(block_unit_buffer_, 0, block_unit_buffer_size);
/*=============================tmp_dst_buffer_============================*/
size_t tmp_dst_buffer_size = thread_count_ * tile_num * k_plane * oC8 * C8NUM * sizeof(float16_t);
tmp_dst_buffer_ = reinterpret_cast<float16_t *>(malloc(tmp_dst_buffer_size));
tmp_dst_buffer_ = reinterpret_cast<float16_t *>(ctx_->allocator->Malloc(tmp_dst_buffer_size));
if (tmp_dst_buffer_ == nullptr) {
MS_LOG(ERROR) << "malloc tmp_dst_buffer_ failed.";
return RET_ERROR;
}
memset(tmp_dst_buffer_, 0, tmp_dst_buffer_size);
/*=============================tmp_out_============================*/
int new_out_plane = UP_DIV(conv_param_->output_h_, C4NUM) * UP_DIV(conv_param_->output_w_, C4NUM) * C4NUM * C4NUM;
size_t tmp_out_size = oC8 * C8NUM * conv_param_->output_batch_ * new_out_plane * sizeof(float16_t);
tmp_out_ = reinterpret_cast<float16_t *>(malloc(tmp_out_size));
tmp_out_ = reinterpret_cast<float16_t *>(ctx_->allocator->Malloc(tmp_out_size));
if (tmp_out_ == nullptr) {
MS_LOG(ERROR) << "malloc tmp_out_ failed.";
return RET_ERROR;
}
memset(tmp_out_, 0, tmp_out_size);
/*=============================nhwc4_input_============================*/
size_t nhwc8_input_size =
iC8 * C8NUM * conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_ * sizeof(float16_t);
nhwc4_input_ = malloc(nhwc8_input_size);
if (nhwc4_input_ == nullptr) {
MS_LOG(ERROR) << "malloc nhwc4_input_ failed.";
return RET_ERROR;
}
memset(nhwc4_input_, 0, nhwc8_input_size);
return RET_OK;
}
@ -160,12 +140,22 @@ int Convolution3x3FP16CPUKernel::Init() {
if (!InferShapeDone()) {
return RET_OK;
}
auto ret = InitWeightBias();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init weight bias failed.";
return RET_ERROR;
}
return ReSize();
}
int Convolution3x3FP16CPUKernel::ReSize() {
FreeTmpBuffer();
auto ret = ConvolutionBaseCPUKernel::CheckResizeValid();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Resize is invalid.";
return ret;
}
FreeTmpBuffer();
if (tile_buffer_ != nullptr) {
free(tile_buffer_);
tile_buffer_ = nullptr;
@ -174,21 +164,35 @@ int Convolution3x3FP16CPUKernel::ReSize() {
free(nhwc4_input_);
nhwc4_input_ = nullptr;
}
auto ret = ConvolutionBaseCPUKernel::Init();
ret = ConvolutionBaseCPUKernel::Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "ConvolutionBase init failed.";
return ret;
}
ret = InitWeightBias();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init weight bias failed.";
const int tile_num = 16;
const int k_plane = 36;
int iC8 = UP_DIV(conv_param_->input_channel_, C8NUM);
/*=============================nhwc4_input_============================*/
size_t nhwc8_input_size =
iC8 * C8NUM * conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_ * sizeof(float16_t);
nhwc4_input_ = malloc(nhwc8_input_size);
if (nhwc4_input_ == nullptr) {
MS_LOG(ERROR) << "malloc nhwc4_input_ failed.";
return RET_ERROR;
}
ret = InitTmpBuffer();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init tmp buffer failed.";
memset(nhwc4_input_, 0, nhwc8_input_size);
/*=============================tile_buffer_============================*/
size_t tile_buffer_size = thread_count_ * tile_num * k_plane * iC8 * C8NUM * sizeof(float16_t);
tile_buffer_ = reinterpret_cast<float16_t *>(malloc(tile_buffer_size));
if (tile_buffer_ == nullptr) {
MS_LOG(ERROR) << "malloc tile_buffer_ failed.";
return RET_ERROR;
}
memset(tile_buffer_, 0, tile_buffer_size);
return RET_OK;
}
@ -220,6 +224,11 @@ int Convolution3x3FP16CPUKernel::Run() {
MS_LOG(ERROR) << "Get execute tensor failed.";
return ret;
}
ret = InitTmpBuffer();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init tmp buffer failed.";
return RET_ERROR;
}
int in_batch = conv_param_->input_batch_;
int in_h = conv_param_->input_h_;
int in_w = conv_param_->input_w_;
@ -229,6 +238,7 @@ int Convolution3x3FP16CPUKernel::Run() {
int error_code = LiteBackendParallelLaunch(Convolution3x3Fp16Impl, this, thread_count_);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "conv3x3 fp16 error error_code[" << error_code << "]";
FreeTmpBuffer();
return RET_ERROR;
}
@ -248,6 +258,7 @@ int Convolution3x3FP16CPUKernel::Run() {
ConvolutionBaseFP16CPUKernel::IfCastOutput();
ConvolutionBaseFP16CPUKernel::FreeTmpBuffer();
FreeTmpBuffer();
return RET_OK;
}
} // namespace mindspore::kernel

View File

@ -30,7 +30,20 @@ class Convolution3x3FP16CPUKernel : public ConvolutionBaseFP16CPUKernel {
const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx,
const mindspore::lite::PrimitiveC *primitive)
: ConvolutionBaseFP16CPUKernel(parameter, inputs, outputs, ctx, primitive) {}
~Convolution3x3FP16CPUKernel() override { FreeTmpBuffer(); }
~Convolution3x3FP16CPUKernel() override {
if (fp16_weight_ != nullptr) {
free(fp16_weight_);
fp16_weight_ = nullptr;
}
if (transformed_filter_addr_ != nullptr) {
free(transformed_filter_addr_);
transformed_filter_addr_ = nullptr;
}
if (tile_buffer_ != nullptr) {
free(tile_buffer_);
tile_buffer_ = nullptr;
}
}
int Init() override;
int ReSize() override;
@ -42,29 +55,16 @@ class Convolution3x3FP16CPUKernel : public ConvolutionBaseFP16CPUKernel {
private:
void FreeTmpBuffer() {
if (fp16_weight_ != nullptr) {
free(fp16_weight_);
fp16_weight_ = nullptr;
}
if (transformed_filter_addr_ != nullptr) {
free(transformed_filter_addr_);
transformed_filter_addr_ = nullptr;
}
if (tile_buffer_ != nullptr) {
free(tile_buffer_);
tile_buffer_ = nullptr;
}
if (block_unit_buffer_ != nullptr) {
free(block_unit_buffer_);
ctx_->allocator->Free(block_unit_buffer_);
block_unit_buffer_ = nullptr;
}
if (tmp_dst_buffer_ != nullptr) {
free(tmp_dst_buffer_);
ctx_->allocator->Free(tmp_dst_buffer_);
tmp_dst_buffer_ = nullptr;
}
if (tmp_out_ != nullptr) {
free(tmp_out_);
ctx_->allocator->Free(tmp_out_);
tmp_out_ = nullptr;
}
}

View File

@ -143,14 +143,19 @@ int ConvolutionFP16CPUKernel::Init() {
}
int ConvolutionFP16CPUKernel::ReSize() {
FreeTmpBuffer();
auto ret = ConvolutionBaseCPUKernel::CheckResizeValid();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Resize is invalid.";
return ret;
}
FreeTmpBuffer();
if (nhwc4_input_ != nullptr) {
free(nhwc4_input_);
nhwc4_input_ = nullptr;
}
auto ret = ConvolutionBaseCPUKernel::Init();
ret = ConvolutionBaseCPUKernel::Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "ConvolutionBase init fail!ret: " << ret;
return ret;

View File

@ -59,16 +59,19 @@ int ConvolutionSWFP16CPUKernel::ProcessFilter() {
}
int ConvolutionSWFP16CPUKernel::InitWeightBias() {
int kernel_h = conv_param_->kernel_h_;
int kernel_w = conv_param_->kernel_w_;
int in_channel = conv_param_->input_channel_;
int out_channel = conv_param_->output_channel_;
auto filter_tensor = in_tensors_.at(kWeightIndex);
int kernel_h = filter_tensor->Height();
int kernel_w = filter_tensor->Width();
int in_channel = filter_tensor->Channel();
int out_channel = filter_tensor->Batch();
conv_param_->input_channel_ = in_channel;
conv_param_->output_channel_ = out_channel;
int oc4 = UP_DIV(out_channel, C4NUM);
int ic4 = UP_DIV(in_channel, C4NUM);
int kernel_plane = kernel_h * kernel_w;
int pack_weight_size = oc4 * ic4 * C4NUM * C4NUM * kernel_plane;
// init weight
// ========================init weight==================== //
packed_weight_ = reinterpret_cast<float16_t *>(malloc(pack_weight_size * sizeof(float16_t)));
if (packed_weight_ == nullptr) {
MS_LOG(ERROR) << "malloc packed_weight_ failed.";
@ -81,7 +84,7 @@ int ConvolutionSWFP16CPUKernel::InitWeightBias() {
return ret;
}
// init bias
// =======================init bias====================== //
bias_data_ = malloc(oc4 * C4NUM * sizeof(float16_t));
if (bias_data_ == nullptr) {
MS_LOG(ERROR) << "malloc bias_data_ failed.";
@ -101,29 +104,16 @@ int ConvolutionSWFP16CPUKernel::InitWeightBias() {
}
int ConvolutionSWFP16CPUKernel::InitTmpBuffer() {
int in_channel = conv_param_->input_channel_;
int out_channel = conv_param_->output_channel_;
int channel_block = UP_DIV(in_channel, C4NUM);
int oc4 = UP_DIV(out_channel, C4NUM);
/*=============================nhwc4_input_============================*/
size_t nhwc4_input_size = channel_block * C4NUM * conv_param_->input_batch_ * conv_param_->input_h_ *
conv_param_->input_w_ * sizeof(float16_t);
nhwc4_input_ = malloc(nhwc4_input_size);
if (nhwc4_input_ == nullptr) {
MS_LOG(ERROR) << "malloc nhwc4_input_ failed.";
return RET_ERROR;
}
memset(nhwc4_input_, 0, nhwc4_input_size);
/*=============================tmp_output_block_============================*/
tmp_output_block_ = reinterpret_cast<float16_t *>(malloc(conv_param_->output_batch_ * conv_param_->output_h_ *
conv_param_->output_w_ * oc4 * C4NUM * sizeof(float16_t)));
tmp_output_block_ = reinterpret_cast<float16_t *>(ctx_->allocator->Malloc(
conv_param_->output_batch_ * conv_param_->output_h_ * conv_param_->output_w_ * oc4 * C4NUM * sizeof(float16_t)));
if (tmp_output_block_ == nullptr) {
MS_LOG(ERROR) << "malloc tmp_output_block_ failed.";
return RET_ERROR;
}
return RET_OK;
}
@ -142,32 +132,44 @@ int ConvolutionSWFP16CPUKernel::Init() {
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int ConvolutionSWFP16CPUKernel::ReSize() {
FreeTmpBuffer();
if (nhwc4_input_ != nullptr) {
free(nhwc4_input_);
nhwc4_input_ = nullptr;
}
auto ret = ConvolutionBaseCPUKernel::Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "ConvolutionBase init fail!ret: " << ret;
return ret;
}
ret = InitWeightBias();
auto ret = InitWeightBias();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init weight bias failed.";
return RET_ERROR;
}
ret = InitTmpBuffer();
ConfigInputOutput();
return ReSize();
}
int ConvolutionSWFP16CPUKernel::ReSize() {
auto ret = ConvolutionBaseCPUKernel::CheckResizeValid();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init tmp buffer failed.";
MS_LOG(ERROR) << "Resize is invalid.";
return ret;
}
FreeTmpBuffer();
if (nhwc4_input_ != nullptr) {
free(nhwc4_input_);
nhwc4_input_ = nullptr;
}
ret = ConvolutionBaseCPUKernel::Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "ConvolutionBase init fail!ret: " << ret;
return ret;
}
/*=============================nhwc4_input_============================*/
int ic4 = UP_DIV(conv_param_->input_channel_, C4NUM);
size_t nhwc4_input_size = ic4 * C4NUM * conv_param_->input_batch_ * conv_param_->input_h_ *
conv_param_->input_w_ * sizeof(float16_t);
nhwc4_input_ = malloc(nhwc4_input_size);
if (nhwc4_input_ == nullptr) {
MS_LOG(ERROR) << "malloc nhwc4_input_ failed.";
return RET_ERROR;
}
ConfigInputOutput();
memset(nhwc4_input_, 0, nhwc4_input_size);
// init sliding window param
slidingWindow_param_ = new SlidingWindowParam;
@ -202,6 +204,11 @@ int ConvolutionSWFP16CPUKernel::Run() {
MS_LOG(ERROR) << "Get Execute tensor failed.";
return ret;
}
ret = InitTmpBuffer();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init tmp buffer failed.";
return RET_ERROR;
}
int in_batch = conv_param_->input_batch_;
int in_h = conv_param_->input_h_;
@ -212,6 +219,7 @@ int ConvolutionSWFP16CPUKernel::Run() {
int error_code = LiteBackendParallelLaunch(ConvolutionSWFp16Impl, this, thread_count_);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "conv fp16 error error_code[" << error_code << "]";
FreeTmpBuffer();
return RET_ERROR;
}
@ -224,6 +232,7 @@ int ConvolutionSWFP16CPUKernel::Run() {
}
ConvolutionBaseFP16CPUKernel::IfCastOutput();
ConvolutionBaseFP16CPUKernel::FreeTmpBuffer();
FreeTmpBuffer();
return RET_OK;
}
} // namespace mindspore::kernel

View File

@ -28,7 +28,16 @@ class ConvolutionSWFP16CPUKernel : public ConvolutionBaseFP16CPUKernel {
const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx,
const mindspore::lite::PrimitiveC *primitive)
: ConvolutionBaseFP16CPUKernel(parameter, inputs, outputs, ctx, primitive) {}
~ConvolutionSWFP16CPUKernel() override { FreeTmpBuffer(); }
~ConvolutionSWFP16CPUKernel() override {
if (fp16_weight_ != nullptr) {
free(fp16_weight_);
fp16_weight_ = nullptr;
}
if (packed_weight_ != nullptr) {
free(packed_weight_);
packed_weight_ = nullptr;
}
}
int Init() override;
int ReSize() override;
@ -41,16 +50,8 @@ class ConvolutionSWFP16CPUKernel : public ConvolutionBaseFP16CPUKernel {
private:
void FreeTmpBuffer() {
if (fp16_weight_ != nullptr) {
free(fp16_weight_);
fp16_weight_ = nullptr;
}
if (packed_weight_ != nullptr) {
free(packed_weight_);
packed_weight_ = nullptr;
}
if (tmp_output_block_ != nullptr) {
free(tmp_output_block_);
ctx_->allocator->Free(tmp_output_block_);
tmp_output_block_ = nullptr;
}
if (slidingWindow_param_ != nullptr) {

View File

@ -110,10 +110,15 @@ void WinogradFilterTransformFp16(const float16_t *weight_data, Matrix *trans_wei
}
int ConvolutionWinogradFP16CPUKernel::InitWeightBias() {
int output_channel = conv_param_->output_channel_;
auto filter_tensor = in_tensors_.at(kWeightIndex);
int in_channel = filter_tensor->Channel();
int out_channel = filter_tensor->Batch();
conv_param_->input_channel_ = in_channel;
conv_param_->output_channel_ = out_channel;
int oc_block, oc_block_num;
oc_block = C8NUM;
oc_block_num = UP_DIV(output_channel, C8NUM);
oc_block_num = UP_DIV(out_channel, C8NUM);
// init weight
auto ret = MallocFilterMatrix(oc_block, oc_block_num);
@ -139,7 +144,7 @@ int ConvolutionWinogradFP16CPUKernel::InitWeightBias() {
auto fp16_bias_data = reinterpret_cast<float16_t *>(bias_data_);
if (in_tensors_.size() == kInputSize2) {
auto ori_bias = reinterpret_cast<float *>(in_tensors_.at(kBiasIndex)->Data());
for (int i = 0; i < output_channel; ++i) {
for (int i = 0; i < out_channel; ++i) {
fp16_bias_data[i] = (float16_t)ori_bias[i];
}
} else {
@ -188,25 +193,14 @@ int ConvolutionWinogradFP16CPUKernel::MallocFilterMatrix(int oc_block, int oc_bl
int ConvolutionWinogradFP16CPUKernel::InitTmpBuffer() {
int cal_num = 16;
int channel_in = conv_param_->input_channel_;
int channel_out = conv_param_->output_channel_;
int output_h = conv_param_->output_h_;
int output_w = conv_param_->output_w_;
int ic8 = UP_DIV(channel_in, C8NUM);
int oc8 = UP_DIV(channel_out, C8NUM);
/*=============================trans_input_============================*/
size_t tile_buffer_size = thread_count_ * cal_num * input_unit_ * input_unit_ * ic8 * C8NUM * sizeof(float16_t);
trans_input_ = reinterpret_cast<float16_t *>(malloc(tile_buffer_size));
if (trans_input_ == nullptr) {
MS_LOG(ERROR) << "malloc trans_input_ failed.";
return RET_ERROR;
}
memset(trans_input_, 0, tile_buffer_size);
/*=============================gemm_out_============================*/
gemm_out_ = reinterpret_cast<float16_t *>(
malloc(thread_count_ * cal_num * input_unit_ * input_unit_ * oc8 * C8NUM * sizeof(float16_t)));
ctx_->allocator->Malloc(thread_count_ * cal_num * input_unit_ * input_unit_ * oc8 * C8NUM * sizeof(float16_t)));
if (gemm_out_ == nullptr) {
MS_LOG(ERROR) << "malloc gemm_out_ failed.";
return RET_ERROR;
@ -215,36 +209,26 @@ int ConvolutionWinogradFP16CPUKernel::InitTmpBuffer() {
/*=============================tmp_out_data_============================*/
int out_w_block = UP_DIV(output_w, output_unit_);
int out_h_block = UP_DIV(output_h, output_unit_);
tmp_out_data_ = reinterpret_cast<float16_t *>(malloc(conv_param_->output_batch_ * out_w_block * out_h_block *
output_unit_ * output_unit_ * oc8 * C8NUM * sizeof(float16_t)));
tmp_out_data_ = reinterpret_cast<float16_t *>(
ctx_->allocator->Malloc(conv_param_->output_batch_ * out_w_block * out_h_block * output_unit_ * output_unit_ * oc8 *
C8NUM * sizeof(float16_t)));
if (tmp_out_data_ == nullptr) {
MS_LOG(ERROR) << "malloc tmp_out_data_ failed.";
return RET_ERROR;
}
/*=============================tmp_data_============================*/
tmp_data_ =
reinterpret_cast<float16_t *>(malloc(thread_count_ * C8NUM * input_unit_ * input_unit_ * sizeof(float16_t)));
tmp_data_ = reinterpret_cast<float16_t *>(
ctx_->allocator->Malloc(thread_count_ * C8NUM * input_unit_ * input_unit_ * sizeof(float16_t)));
if (tmp_data_ == nullptr) {
MS_LOG(ERROR) << "malloc tmp_data_ failed.";
return RET_ERROR;
}
memset(tmp_data_, 0, C8NUM * input_unit_ * input_unit_ * sizeof(float16_t));
tmp_buffer_address_list_[0] = trans_input_;
tmp_buffer_address_list_[1] = gemm_out_;
tmp_buffer_address_list_[2] = tmp_out_data_;
tmp_buffer_address_list_[3] = tmp_data_;
/*=============================nhwc4_input_============================*/
size_t nhwc8_input_size =
ic8 * C8NUM * conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_ * sizeof(float16_t);
nhwc4_input_ = malloc(nhwc8_input_size);
if (nhwc4_input_ == nullptr) {
MS_LOG(ERROR) << "malloc nhwc4_input_ failed.";
return RET_ERROR;
}
memset(nhwc4_input_, 0, nhwc8_input_size);
return RET_OK;
}
@ -270,17 +254,37 @@ int ConvolutionWinogradFP16CPUKernel::Init() {
if (!InferShapeDone()) {
return RET_OK;
}
kernel_unit_ = conv_param_->kernel_h_;
input_unit_ = output_unit_ + kernel_unit_ - 1;
conv_param_->input_unit_ = input_unit_;
conv_param_->output_unit_ = output_unit_;
auto ret = InitWeightBias();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init weight bias failed.";
return RET_ERROR;
}
return ReSize();
}
int ConvolutionWinogradFP16CPUKernel::ReSize() {
auto ret = ConvolutionBaseCPUKernel::CheckResizeValid();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Resize is invalid.";
return ret;
}
FreeTmpBuffer();
if (nhwc4_input_ != nullptr) {
free(nhwc4_input_);
nhwc4_input_ = nullptr;
}
if (trans_input_ != nullptr) {
free(trans_input_);
trans_input_ = nullptr;
}
auto ret = ConvolutionBaseCPUKernel::Init();
ret = ConvolutionBaseCPUKernel::Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "ConvolutionBase init failed.";
return RET_ERROR;
@ -290,17 +294,28 @@ int ConvolutionWinogradFP16CPUKernel::ReSize() {
conv_param_->input_unit_ = input_unit_;
conv_param_->output_unit_ = output_unit_;
ret = InitWeightBias();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init weight bias failed.";
int cal_num = 16;
int channel_in = conv_param_->input_channel_;
int ic8 = UP_DIV(channel_in, C8NUM);
/*=============================nhwc4_input_============================*/
size_t nhwc8_input_size =
ic8 * C8NUM * conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_ * sizeof(float16_t);
nhwc4_input_ = malloc(nhwc8_input_size);
if (nhwc4_input_ == nullptr) {
MS_LOG(ERROR) << "malloc nhwc4_input_ failed.";
return RET_ERROR;
}
// malloc tmp buffer
ret = InitTmpBuffer();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init tmp buffer failed.";
memset(nhwc4_input_, 0, nhwc8_input_size);
/*=============================trans_input_============================*/
size_t tile_buffer_size = thread_count_ * cal_num * input_unit_ * input_unit_ * ic8 * C8NUM * sizeof(float16_t);
trans_input_ = reinterpret_cast<float16_t *>(malloc(tile_buffer_size));
if (trans_input_ == nullptr) {
MS_LOG(ERROR) << "malloc trans_input_ failed.";
return RET_ERROR;
}
memset(trans_input_, 0, tile_buffer_size);
ret = ConfigInputOutput();
if (ret != RET_OK) {
MS_LOG(ERROR) << "ConfigInputOutput failed.";
@ -339,6 +354,12 @@ int ConvolutionWinogradFP16CPUKernel::Run() {
return ret;
}
ret = InitTmpBuffer();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init tmp buffer failed.";
return RET_ERROR;
}
int in_batch = conv_param_->input_batch_;
int in_h = conv_param_->input_h_;
int in_w = conv_param_->input_w_;
@ -348,6 +369,7 @@ int ConvolutionWinogradFP16CPUKernel::Run() {
int error_code = LiteBackendParallelLaunch(ConvolutionWinogradFp16Impl, this, thread_count_);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "conv winograd error error_code[" << error_code << "]";
FreeTmpBuffer();
return RET_ERROR;
}
@ -364,6 +386,7 @@ int ConvolutionWinogradFP16CPUKernel::Run() {
}
ConvolutionBaseFP16CPUKernel::IfCastOutput();
ConvolutionBaseFP16CPUKernel::FreeTmpBuffer();
FreeTmpBuffer();
return RET_OK;
}
} // namespace mindspore::kernel

View File

@ -33,7 +33,20 @@ class ConvolutionWinogradFP16CPUKernel : public ConvolutionBaseFP16CPUKernel {
const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx,
const mindspore::lite::PrimitiveC *primitive, int out_unit)
: ConvolutionBaseFP16CPUKernel(parameter, inputs, outputs, ctx, primitive), output_unit_(out_unit) {}
~ConvolutionWinogradFP16CPUKernel() override { FreeTmpBuffer(); }
~ConvolutionWinogradFP16CPUKernel() override {
if (fp16_weight_ != nullptr) {
free(fp16_weight_);
fp16_weight_ = nullptr;
}
if (trans_input_ != nullptr) {
free(trans_input_);
trans_input_ = nullptr;
}
if (trans_weight_ != nullptr) {
delete trans_weight_;
trans_weight_ = nullptr;
}
}
int Init() override;
int ReSize() override;
@ -46,30 +59,18 @@ class ConvolutionWinogradFP16CPUKernel : public ConvolutionBaseFP16CPUKernel {
private:
void FreeTmpBuffer() {
if (fp16_weight_ != nullptr) {
free(fp16_weight_);
fp16_weight_ = nullptr;
}
if (tmp_data_ != nullptr) {
free(tmp_data_);
ctx_->allocator->Free(tmp_data_);
tmp_data_ = nullptr;
}
if (trans_input_ != nullptr) {
free(trans_input_);
trans_input_ = nullptr;
}
if (gemm_out_ != nullptr) {
free(gemm_out_);
ctx_->allocator->Free(gemm_out_);
gemm_out_ = nullptr;
}
if (tmp_out_data_ != nullptr) {
free(tmp_out_data_);
ctx_->allocator->Free(tmp_out_data_);
tmp_out_data_ = nullptr;
}
if (trans_weight_ != nullptr) {
delete trans_weight_;
trans_weight_ = nullptr;
}
}
int kernel_unit_;
int input_unit_;

View File

@ -35,10 +35,13 @@ using mindspore::schema::PrimitiveType_Conv2D;
namespace mindspore::kernel {
int ConvolutionCPUKernel::InitWeightBias() {
int kernel_h = conv_param_->kernel_h_;
int kernel_w = conv_param_->kernel_w_;
int in_channel = conv_param_->input_channel_;
int out_channel = conv_param_->output_channel_;
auto filter_tensor = in_tensors_.at(kWeightIndex);
int kernel_h = filter_tensor->Height();
int kernel_w = filter_tensor->Width();
int in_channel = filter_tensor->Channel();
int out_channel = filter_tensor->Batch();
conv_param_->input_channel_ = in_channel;
conv_param_->output_channel_ = out_channel;
int ic4 = UP_DIV(in_channel, C4NUM);
int kernel_plane = kernel_h * kernel_w;
int oc_block, oc_block_num;
@ -52,7 +55,7 @@ int ConvolutionCPUKernel::InitWeightBias() {
int pack_weight_size = oc_block_num * oc_block * ic4 * C4NUM * kernel_plane;
// =====================init weight==========================//
auto origin_weight = reinterpret_cast<float *>(in_tensors_.at(kWeightIndex)->Data());
auto origin_weight = reinterpret_cast<float *>(filter_tensor->Data());
packed_weight_ = reinterpret_cast<float *>(malloc(pack_weight_size * sizeof(float)));
if (packed_weight_ == nullptr) {
MS_LOG(ERROR) << "malloc packed weight failed.";
@ -67,7 +70,7 @@ int ConvolutionCPUKernel::InitWeightBias() {
MS_LOG(ERROR) << "malloc bias failed.";
return RET_ERROR;
}
memset(bias_data_, 0, oc_block_num * oc_block * sizeof(float));
if (in_tensors_.size() == kInputSize2) {
auto ori_bias = reinterpret_cast<float *>(in_tensors_.at(kBiasIndex)->Data());
memcpy(bias_data_, ori_bias, out_channel * sizeof(float));
@ -78,39 +81,11 @@ int ConvolutionCPUKernel::InitWeightBias() {
}
int ConvolutionCPUKernel::InitTmpBuffer() {
int kernel_h = conv_param_->kernel_h_;
int kernel_w = conv_param_->kernel_w_;
int in_batch = conv_param_->input_batch_;
int in_channel = conv_param_->input_channel_;
int ic4 = UP_DIV(in_channel, C4NUM);
int out_channel = conv_param_->output_channel_;
int kernel_plane = kernel_h * kernel_w;
// malloc packed_inputs
int output_count = conv_param_->output_h_ * conv_param_->output_w_;
int output_tile_count = UP_DIV(output_count, TILE_NUM);
int unit_size = kernel_plane * ic4 * C4NUM;
int packed_input_size = output_tile_count * TILE_NUM * unit_size;
/*=============================packed_input============================*/
packed_input_ = reinterpret_cast<float *>(malloc(in_batch * packed_input_size * sizeof(float)));
if (packed_input_ == nullptr) {
MS_LOG(ERROR) << "malloc packed input failed.";
return RET_ERROR;
}
memset(packed_input_, 0, in_batch * packed_input_size * sizeof(float));
/*=============================nhwc4_input_============================*/
size_t nhwc4_input_size =
ic4 * C4NUM * conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_ * sizeof(float);
nhwc4_input_ = malloc(nhwc4_input_size);
if (nhwc4_input_ == nullptr) {
MS_LOG(ERROR) << "malloc nhwc4 input failed.";
return RET_ERROR;
}
memset(nhwc4_input_, 0, nhwc4_input_size);
MS_ASSERT(ctx_->allocator != nullptr);
/*=============================tmp_output_block_============================*/
tmp_output_block_ = reinterpret_cast<float *>(malloc(TILE_NUM * out_channel * sizeof(float)));
tmp_output_block_ = reinterpret_cast<float *>(ctx_->allocator->Malloc(TILE_NUM * out_channel * sizeof(float)));
if (tmp_output_block_ == nullptr) {
MS_LOG(ERROR) << "malloc tmp output block failed.";
return RET_ERROR;
@ -134,34 +109,59 @@ int ConvolutionCPUKernel::Init() {
if (!InferShapeDone()) {
return RET_OK;
}
auto ret = InitWeightBias();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init weight bias failed.";
return RET_ERROR;
}
ConfigInputOutput();
return ReSize();
}
int ConvolutionCPUKernel::ReSize() {
auto ret = ConvolutionBaseCPUKernel::CheckResizeValid();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Resize is invalid.";
return ret;
}
FreeTmpBuffer();
if (nhwc4_input_ != nullptr) {
free(nhwc4_input_);
nhwc4_input_ = nullptr;
}
auto ret = ConvolutionBaseCPUKernel::Init();
if (packed_input_ != nullptr) {
free(packed_input_);
packed_input_ = nullptr;
}
ret = ConvolutionBaseCPUKernel::Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "ConvolutionBase init failed.";
return RET_ERROR;
}
ret = InitWeightBias();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init weight bias failed.";
/*=============================nhwc4_input_============================*/
int ic4 = UP_DIV(conv_param_->input_channel_, C4NUM);
size_t nhwc4_input_size =
ic4 * C4NUM * conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_ * sizeof(float);
nhwc4_input_ = malloc(nhwc4_input_size);
if (nhwc4_input_ == nullptr) {
MS_LOG(ERROR) << "malloc nhwc4 input failed.";
return RET_ERROR;
}
// init tmp input, output
ret = InitTmpBuffer();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init tmp buffer failed.";
memset(nhwc4_input_, 0, nhwc4_input_size);
/*=============================packed_input============================*/
int output_count = conv_param_->output_h_ * conv_param_->output_w_;
int output_tile_count = UP_DIV(output_count, TILE_NUM);
int unit_size = conv_param_->kernel_h_ * conv_param_->kernel_w_ * ic4 * C4NUM;
int packed_input_size = output_tile_count * TILE_NUM * unit_size;
packed_input_ = reinterpret_cast<float *>(malloc(conv_param_->input_batch_ * packed_input_size * sizeof(float)));
if (packed_input_ == nullptr) {
MS_LOG(ERROR) << "malloc packed input failed.";
return RET_ERROR;
}
// config input output
ConfigInputOutput();
memset(packed_input_, 0, conv_param_->input_batch_ * packed_input_size * sizeof(float));
return RET_OK;
}
@ -192,19 +192,25 @@ int ConvolutionCPUKernel::Run() {
MS_LOG(ERROR) << "Prepare fail!ret: " << prepare_ret;
return prepare_ret;
}
// ============Init buffer using memory pool allocator=============//
auto ret = InitTmpBuffer();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init tmp buffer failed.";
return RET_ERROR;
}
auto input_tensor = in_tensors_.at(kInputIndex);
auto ori_input_data = input_tensor->Data();
int in_batch = conv_param_->input_batch_;
int in_h = conv_param_->input_h_;
int in_w = conv_param_->input_w_;
int in_channel = conv_param_->input_channel_;
PackNHWCToNHWC4Fp32(ori_input_data, nhwc4_input_, in_batch, in_h * in_w, in_channel);
PackNHWCToNHWC4Fp32(ori_input_data, nhwc4_input_, conv_param_->input_batch_,
conv_param_->input_h_ * conv_param_->input_w_, conv_param_->input_channel_);
int error_code = LiteBackendParallelLaunch(ConvolutionImpl, this, thread_count_);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "conv error error_code[" << error_code << "]";
FreeTmpBuffer();
return RET_ERROR;
}
FreeTmpBuffer();
return RET_OK;
}

View File

@ -30,7 +30,16 @@ class ConvolutionCPUKernel : public ConvolutionBaseCPUKernel {
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx,
const mindspore::lite::PrimitiveC *primitive)
: ConvolutionBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
~ConvolutionCPUKernel() override { FreeTmpBuffer(); }
~ConvolutionCPUKernel() override {
if (packed_weight_ != nullptr) {
free(packed_weight_);
packed_weight_ = nullptr;
}
if (packed_input_ != nullptr) {
free(packed_input_);
packed_input_ = nullptr;
}
}
int Init() override;
int ReSize() override;
@ -42,18 +51,10 @@ class ConvolutionCPUKernel : public ConvolutionBaseCPUKernel {
private:
void FreeTmpBuffer() {
if (packed_input_ != nullptr) {
free(packed_input_);
packed_input_ = nullptr;
}
if (tmp_output_block_ != nullptr) {
free(tmp_output_block_);
ctx_->allocator->Free(tmp_output_block_);
tmp_output_block_ = nullptr;
}
if (packed_weight_ != nullptr) {
free(packed_weight_);
packed_weight_ = nullptr;
}
}
float *packed_input_ = nullptr;
float *packed_weight_ = nullptr;

View File

@ -49,8 +49,11 @@ void ProcessFilter(float *origin_weight, float *dst_weight, ConvParameter *conv_
}
int Convolution3x3CPUKernel::InitWeightBias() {
auto input_channel = conv_param_->input_channel_;
auto output_channel = conv_param_->output_channel_;
auto filter_tensor = in_tensors_.at(kWeightIndex);
auto input_channel = filter_tensor->Channel();
auto output_channel = filter_tensor->Batch();
conv_param_->input_channel_ = input_channel;
conv_param_->output_channel_ = output_channel;
int iC4 = UP_DIV(input_channel, C4NUM);
int oC4 = UP_DIV(output_channel, C4NUM);
int oc_block, oc_block_num;
@ -91,56 +94,35 @@ int Convolution3x3CPUKernel::InitWeightBias() {
}
int Convolution3x3CPUKernel::InitTmpBuffer() {
int iC4 = UP_DIV(conv_param_->input_channel_, C4NUM);
int oC4 = UP_DIV(conv_param_->output_channel_, C4NUM);
const int k_plane = 16;
/*=============================tile_buffer_============================*/
size_t tile_buffer_size = thread_count_ * TILE_NUM * k_plane * iC4 * C4NUM * sizeof(float);
tile_buffer_ = reinterpret_cast<float *>(malloc(tile_buffer_size));
if (tile_buffer_ == nullptr) {
MS_LOG(ERROR) << "malloc tile buffer failed.";
return RET_ERROR;
}
memset(tile_buffer_, 0, tile_buffer_size);
MS_ASSERT(ctx_->allocator != nullptr);
/*=============================block_unit_buffer_============================*/
size_t block_unit_buffer_size = thread_count_ * k_plane * C4NUM * sizeof(float);
block_unit_buffer_ = reinterpret_cast<float *>(malloc(block_unit_buffer_size));
block_unit_buffer_ = reinterpret_cast<float *>(ctx_->allocator->Malloc(block_unit_buffer_size));
if (block_unit_buffer_ == nullptr) {
MS_LOG(ERROR) << "malloc block_unit_buffer_ failed.";
return RET_ERROR;
}
memset(block_unit_buffer_, 0, block_unit_buffer_size);
/*=============================tmp_dst_buffer_============================*/
size_t tmp_dst_buffer_size = thread_count_ * TILE_NUM * k_plane * oC4 * C4NUM * sizeof(float);
tmp_dst_buffer_ = reinterpret_cast<float *>(malloc(tmp_dst_buffer_size));
tmp_dst_buffer_ = reinterpret_cast<float *>(ctx_->allocator->Malloc(tmp_dst_buffer_size));
if (tmp_dst_buffer_ == nullptr) {
MS_LOG(ERROR) << "malloc tmp_dst_buffer_ failed.";
return RET_ERROR;
}
memset(tmp_dst_buffer_, 0, tmp_dst_buffer_size);
/*=============================nhwc4_input_============================*/
size_t nhwc4_input_size =
iC4 * C4NUM * conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_ * sizeof(float);
nhwc4_input_ = malloc(nhwc4_input_size);
if (nhwc4_input_ == nullptr) {
MS_LOG(ERROR) << "malloc nhwc4_input_ failed.";
return RET_ERROR;
}
memset(nhwc4_input_, 0, nhwc4_input_size);
/*=============================nc4hw4_out_============================*/
size_t nc4hw4_out_size =
oC4 * C4NUM * conv_param_->output_batch_ * conv_param_->output_h_ * conv_param_->output_w_ * sizeof(float);
nc4hw4_out_ = reinterpret_cast<float *>(malloc(nc4hw4_out_size));
nc4hw4_out_ = reinterpret_cast<float *>(ctx_->allocator->Malloc(nc4hw4_out_size));
if (nc4hw4_out_ == nullptr) {
MS_LOG(ERROR) << "malloc nc4hw4_out_ failed.";
return RET_ERROR;
}
memset(nc4hw4_out_, 0, nc4hw4_out_size);
tmp_buffer_address_list_[0] = tile_buffer_;
tmp_buffer_address_list_[1] = block_unit_buffer_;
tmp_buffer_address_list_[2] = tmp_dst_buffer_;
@ -162,28 +144,57 @@ int Convolution3x3CPUKernel::Init() {
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int Convolution3x3CPUKernel::ReSize() {
FreeTmpBuffer();
auto ret = ConvolutionBaseCPUKernel::Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "ConvolutionBase init failed.ret: " << ret;
return RET_ERROR;
}
ret = InitWeightBias();
auto ret = InitWeightBias();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init weight bias failed.ret: " << ret;
return RET_ERROR;
}
ret = InitTmpBuffer();
ConfigInputOutput();
return ReSize();
}
int Convolution3x3CPUKernel::ReSize() {
auto ret = ConvolutionBaseCPUKernel::CheckResizeValid();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init tmp buffer failed.ret: " << ret;
MS_LOG(ERROR) << "Resize is invalid.";
return ret;
}
FreeTmpBuffer();
if (nhwc4_input_ != nullptr) {
free(nhwc4_input_);
nhwc4_input_ = nullptr;
}
if (tile_buffer_ != nullptr) {
free(tile_buffer_);
tile_buffer_ = nullptr;
}
ret = ConvolutionBaseCPUKernel::Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "ConvolutionBase init failed.ret: " << ret;
return RET_ERROR;
}
ConfigInputOutput();
int iC4 = UP_DIV(conv_param_->input_channel_, C4NUM);
/*=============================nhwc4_input_============================*/
size_t nhwc4_input_size =
iC4 * C4NUM * conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_ * sizeof(float);
nhwc4_input_ = malloc(nhwc4_input_size);
if (nhwc4_input_ == nullptr) {
MS_LOG(ERROR) << "malloc nhwc4_input_ failed.";
return RET_ERROR;
}
memset(nhwc4_input_, 0, nhwc4_input_size);
/*=============================tile_buffer_============================*/
size_t tile_buffer_size = thread_count_ * TILE_NUM * C16NUM * iC4 * C4NUM * sizeof(float);
tile_buffer_ = reinterpret_cast<float *>(malloc(tile_buffer_size));
if (tile_buffer_ == nullptr) {
MS_LOG(ERROR) << "malloc tile buffer failed.";
return RET_ERROR;
}
memset(tile_buffer_, 0, tile_buffer_size);
return RET_OK;
}
@ -214,17 +225,21 @@ int Convolution3x3CPUKernel::Run() {
MS_LOG(ERROR) << "Prepare fail!ret: " << prepare_ret;
return prepare_ret;
}
auto ret = InitTmpBuffer();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init tmp buffer failed.ret: " << ret;
return RET_ERROR;
}
auto input_tensor = in_tensors_.at(kInputIndex);
auto ori_input_data = input_tensor->Data();
int in_batch = conv_param_->input_batch_;
int in_h = conv_param_->input_h_;
int in_w = conv_param_->input_w_;
int in_channel = conv_param_->input_channel_;
PackNHWCToNHWC4Fp32(ori_input_data, nhwc4_input_, in_batch, in_h * in_w, in_channel);
PackNHWCToNHWC4Fp32(ori_input_data, nhwc4_input_, conv_param_->input_batch_,
conv_param_->input_h_ * conv_param_->input_w_, conv_param_->input_channel_);
int error_code = LiteBackendParallelLaunch(Convolution3x3Impl, this, thread_count_);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "conv3x3 error error_code[" << error_code << "]";
FreeTmpBuffer();
return RET_ERROR;
}
@ -241,6 +256,7 @@ int Convolution3x3CPUKernel::Run() {
PackNC4HW4ToNHWCFp32(nc4hw4_out_, output_addr, conv_param_->output_batch_,
conv_param_->output_h_ * conv_param_->output_w_, conv_param_->output_channel_);
}
FreeTmpBuffer();
return RET_OK;
}
} // namespace mindspore::kernel

View File

@ -29,8 +29,15 @@ class Convolution3x3CPUKernel : public ConvolutionBaseCPUKernel {
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx,
const mindspore::lite::PrimitiveC *primitive)
: ConvolutionBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
~Convolution3x3CPUKernel() override { FreeTmpBuffer(); }
~Convolution3x3CPUKernel() override {
if (transformed_filter_addr_ != nullptr) {
free(transformed_filter_addr_);
}
if (tile_buffer_ != nullptr) {
free(tile_buffer_);
tile_buffer_ = nullptr;
}
}
int Init() override;
int ReSize() override;
int Run() override;
@ -41,24 +48,16 @@ class Convolution3x3CPUKernel : public ConvolutionBaseCPUKernel {
private:
void FreeTmpBuffer() {
if (tile_buffer_ != nullptr) {
free(tile_buffer_);
tile_buffer_ = nullptr;
}
if (block_unit_buffer_ != nullptr) {
free(block_unit_buffer_);
ctx_->allocator->Free(block_unit_buffer_);
block_unit_buffer_ = nullptr;
}
if (tmp_dst_buffer_ != nullptr) {
free(tmp_dst_buffer_);
ctx_->allocator->Free(tmp_dst_buffer_);
tmp_dst_buffer_ = nullptr;
}
if (nhwc4_input_ != nullptr) {
free(nhwc4_input_);
nhwc4_input_ = nullptr;
}
if (nc4hw4_out_ != nullptr) {
free(nc4hw4_out_);
ctx_->allocator->Free(nc4hw4_out_);
nc4hw4_out_ = nullptr;
}
}

View File

@ -30,14 +30,17 @@ using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Conv2D;
int ConvolutionSWCPUKernel::InitWeightBias() {
int kernel_h = conv_param_->kernel_h_;
int kernel_w = conv_param_->kernel_w_;
int in_channel = conv_param_->input_channel_;
int out_channel = conv_param_->output_channel_;
int ic4 = UP_DIV(in_channel, C4NUM);
auto filter_tensor = in_tensors_.at(kWeightIndex);
auto input_channel = filter_tensor->Channel();
auto output_channel = filter_tensor->Batch();
int kernel_h = filter_tensor->Height();
int kernel_w = filter_tensor->Width();
conv_param_->input_channel_ = input_channel;
conv_param_->output_channel_ = output_channel;
int ic4 = UP_DIV(input_channel, C4NUM);
int kernel_plane = kernel_h * kernel_w;
int oc_block = C4NUM;
int oc_block_num = UP_DIV(out_channel, C4NUM);
int oc_block_num = UP_DIV(output_channel, C4NUM);
int pack_weight_size = oc_block_num * oc_block * ic4 * C4NUM * kernel_plane;
// ==================================init weight======================================//
@ -48,13 +51,13 @@ int ConvolutionSWCPUKernel::InitWeightBias() {
return RET_ERROR;
}
memset(packed_weight_, 0, pack_weight_size * sizeof(float));
for (int oc = 0; oc < out_channel; ++oc) {
int src_oc_offset = oc * kernel_h * kernel_w * in_channel;
for (int oc = 0; oc < output_channel; ++oc) {
int src_oc_offset = oc * kernel_h * kernel_w * input_channel;
int dst_oc_offset = oc * kernel_h * kernel_w * ic4 * C4NUM;
for (int i = 0; i < kernel_h * kernel_w; ++i) {
const float *src = origin_weight + src_oc_offset + i * in_channel;
const float *src = origin_weight + src_oc_offset + i * input_channel;
float *dst = packed_weight_ + dst_oc_offset + i * ic4 * C4NUM;
memcpy(dst, src, in_channel * sizeof(float));
memcpy(dst, src, input_channel * sizeof(float));
}
}
@ -67,7 +70,7 @@ int ConvolutionSWCPUKernel::InitWeightBias() {
memset(bias_data_, 0, oc_block_num * oc_block * sizeof(float));
if (in_tensors_.size() == kInputSize2) {
auto ori_bias = reinterpret_cast<float *>(in_tensors_.at(kBiasIndex)->Data());
memcpy(bias_data_, ori_bias, out_channel * sizeof(float));
memcpy(bias_data_, ori_bias, output_channel * sizeof(float));
} else {
MS_ASSERT(in_tensors_.size() == kInputSize1);
}
@ -75,24 +78,13 @@ int ConvolutionSWCPUKernel::InitWeightBias() {
}
int ConvolutionSWCPUKernel::InitTmpBuffer() {
int in_channel = conv_param_->input_channel_;
int ic4 = UP_DIV(in_channel, C4NUM);
int out_channel = conv_param_->output_channel_;
int oc4 = UP_DIV(out_channel, C4NUM);
/*=============================nhwc4_input_============================*/
size_t nhwc4_input_size =
ic4 * C4NUM * conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_ * sizeof(float);
nhwc4_input_ = malloc(nhwc4_input_size);
if (nhwc4_input_ == nullptr) {
MS_LOG(ERROR) << "malloc nhwc4 input failed.";
return RET_ERROR;
}
memset(nhwc4_input_, 0, nhwc4_input_size);
MS_ASSERT(ctx_->allocator != nullptr);
/*=============================tmp_output_block_============================*/
tmp_output_block_ = reinterpret_cast<float *>(
malloc(conv_param_->output_batch_ * conv_param_->output_h_ * conv_param_->output_w_ * oc4 * C4NUM * sizeof(float)));
tmp_output_block_ = reinterpret_cast<float *>(ctx_->allocator->Malloc(
conv_param_->output_batch_ * conv_param_->output_h_ * conv_param_->output_w_ * oc4 * C4NUM * sizeof(float)));
if (tmp_output_block_ == nullptr) {
MS_LOG(ERROR) << "malloc tmp output block failed.";
return RET_ERROR;
@ -110,39 +102,49 @@ int ConvolutionSWCPUKernel::Init() {
if (!InferShapeDone()) {
return RET_OK;
}
auto ret = InitWeightBias();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init weight bias failed.";
return RET_ERROR;
}
// config input output
ConfigInputOutput();
return ReSize();
}
int ConvolutionSWCPUKernel::ReSize() {
FreeTmpBuffer();
auto ret = ConvolutionBaseCPUKernel::CheckResizeValid();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Resize is invalid.";
return ret;
}
FreeTmpBuffer();
if (nhwc4_input_ != nullptr) {
free(nhwc4_input_);
nhwc4_input_ = nullptr;
}
auto ret = ConvolutionBaseCPUKernel::Init();
ret = ConvolutionBaseCPUKernel::Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "ConvolutionBase init failed.";
return RET_ERROR;
}
ret = InitWeightBias();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init weight bias failed.";
return RET_ERROR;
}
// init tmp input, output
ret = InitTmpBuffer();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init tmp buffer failed.";
/*=============================nhwc4_input_============================*/
int ic4 = UP_DIV(conv_param_->input_channel_, C4NUM);
size_t nhwc4_input_size =
ic4 * C4NUM * conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_ * sizeof(float);
nhwc4_input_ = malloc(nhwc4_input_size);
if (nhwc4_input_ == nullptr) {
MS_LOG(ERROR) << "malloc nhwc4 input failed.";
return RET_ERROR;
}
memset(nhwc4_input_, 0, nhwc4_input_size);
// init sliding window param
slidingWindow_param_ = new SlidingWindowParam;
InitSlidingParamConv(slidingWindow_param_, conv_param_, C4NUM);
// config input output
ConfigInputOutput();
return RET_OK;
}
@ -169,20 +171,25 @@ int ConvolutionSWCPUKernel::Run() {
MS_LOG(ERROR) << "Prepare fail!ret: " << prepare_ret;
return prepare_ret;
}
// init tmp input, output
auto ret = InitTmpBuffer();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init tmp buffer failed.";
return RET_ERROR;
}
auto input_tensor = in_tensors_.at(kInputIndex);
auto ori_input_data = input_tensor->Data();
int in_batch = conv_param_->input_batch_;
int in_h = conv_param_->input_h_;
int in_w = conv_param_->input_w_;
int in_channel = conv_param_->input_channel_;
PackNHWCToNHWC4Fp32(ori_input_data, nhwc4_input_, in_batch, in_h * in_w, in_channel);
PackNHWCToNHWC4Fp32(ori_input_data, nhwc4_input_, conv_param_->input_batch_,
conv_param_->input_h_ * conv_param_->input_w_, conv_param_->input_channel_);
int error_code = LiteBackendParallelLaunch(ConvolutionSWImpl, this, thread_count_);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "conv error error_code[" << error_code << "]";
FreeTmpBuffer();
return RET_ERROR;
}
// output nhwc4
auto out_tensor = out_tensors_.front();
auto out_data = reinterpret_cast<float *>(out_tensor->Data());
int oc4_res = conv_param_->output_channel_ % C4NUM;
@ -190,6 +197,7 @@ int ConvolutionSWCPUKernel::Run() {
PackNHWC4ToNHWCFp32(tmp_output_block_, out_data, conv_param_->output_batch_,
conv_param_->output_h_ * conv_param_->output_w_, conv_param_->output_channel_);
}
FreeTmpBuffer();
return RET_OK;
}
} // namespace mindspore::kernel

View File

@ -32,7 +32,12 @@ class ConvolutionSWCPUKernel : public ConvolutionBaseCPUKernel {
const mindspore::lite::PrimitiveC *primitive)
: ConvolutionBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
~ConvolutionSWCPUKernel() override { FreeTmpBuffer(); }
~ConvolutionSWCPUKernel() override {
if (packed_weight_ != nullptr) {
free(packed_weight_);
packed_weight_ = nullptr;
}
}
int Init() override;
int ReSize() override;
@ -44,12 +49,8 @@ class ConvolutionSWCPUKernel : public ConvolutionBaseCPUKernel {
private:
void FreeTmpBuffer() {
if (packed_weight_ != nullptr) {
free(packed_weight_);
packed_weight_ = nullptr;
}
if (tmp_output_block_ != nullptr) {
free(tmp_output_block_);
ctx_->allocator->Free(tmp_output_block_);
tmp_output_block_ = nullptr;
}
if (slidingWindow_param_ != nullptr) {

View File

@ -30,12 +30,12 @@ using mindspore::schema::PrimitiveType_Conv2D;
namespace mindspore::kernel {
void WinogradFilterTransform(const float *weight_data, Matrix *trans_weight, int kernel_unit, int input_unit,
ConvParameter *conv_param, int oc_block) {
// original weight format : ohwi
// =============original weight format : ohwi===============//
auto channel_in = conv_param->input_channel_;
auto channel_out = conv_param->output_channel_;
int input_unit_square = input_unit * input_unit;
// generate matrix_G && matrix_GT
// =============generate matrix_G && matrix_GT===============//
auto matrix_g = TransformMatrixGenerator(input_unit, kernel_unit);
auto matrix_gt = TransformMatrixGenerator(kernel_unit, input_unit);
ChooseMatrixG(matrix_g, matrix_gt);
@ -95,15 +95,20 @@ void WinogradFilterTransform(const float *weight_data, Matrix *trans_weight, int
}
int ConvolutionWinogradCPUKernel::InitWeightBias() {
int output_channel = conv_param_->output_channel_;
int oc4 = UP_DIV(output_channel, C4NUM);
auto filter_tensor = in_tensors_.at(kWeightIndex);
int in_channel = filter_tensor->Channel();
int out_channel = filter_tensor->Batch();
conv_param_->input_channel_ = in_channel;
conv_param_->output_channel_ = out_channel;
int oc4 = UP_DIV(out_channel, C4NUM);
int oc_block, oc_block_num;
// #ifdef ENABLE_ARM32
// oc_block = C4NUM;
// oc_block_num = UP_DIV(output_channel, C4NUM);
// #else
oc_block = C8NUM;
oc_block_num = UP_DIV(output_channel, C8NUM);
oc_block_num = UP_DIV(out_channel, C8NUM);
// #endif
// init weight
@ -112,8 +117,7 @@ int ConvolutionWinogradCPUKernel::InitWeightBias() {
MS_LOG(ERROR) << "Malloc filter matrix failed.";
return RET_ERROR;
}
auto weight_tensor = in_tensors_.at(kWeightIndex);
auto weight_data = reinterpret_cast<float *>(weight_tensor->Data());
auto weight_data = reinterpret_cast<float *>(filter_tensor->Data());
WinogradFilterTransform(weight_data, trans_weight_, kernel_unit_, input_unit_, conv_param_, oc_block);
// init bias
@ -122,7 +126,7 @@ int ConvolutionWinogradCPUKernel::InitWeightBias() {
memset(bias_data_, 0, new_bias_size);
if (in_tensors_.size() == kInputSize2) {
auto ori_bias_addr = reinterpret_cast<float *>(in_tensors_.at(kBiasIndex)->Data());
memcpy(bias_data_, ori_bias_addr, output_channel * sizeof(float));
memcpy(bias_data_, ori_bias_addr, out_channel * sizeof(float));
} else {
MS_ASSERT(in_tensors_.size() == kInputSize1);
}
@ -167,25 +171,15 @@ int ConvolutionWinogradCPUKernel::MallocFilterMatrix(int oc_block, int oc_block_
}
int ConvolutionWinogradCPUKernel::InitTmpBuffer() {
int channel_in = conv_param_->input_channel_;
int channel_out = conv_param_->output_channel_;
int output_h = conv_param_->output_h_;
int output_w = conv_param_->output_w_;
int ic4 = UP_DIV(channel_in, C4NUM);
int oc4 = UP_DIV(channel_out, C4NUM);
/*=============================trans_input_============================*/
size_t tile_buffer_size = thread_count_ * TILE_NUM * input_unit_ * input_unit_ * ic4 * C4NUM * sizeof(float);
trans_input_ = reinterpret_cast<float *>(malloc(tile_buffer_size));
if (trans_input_ == nullptr) {
MS_LOG(ERROR) << "malloc trans_input_ failed.";
return RET_ERROR;
}
memset(trans_input_, 0, tile_buffer_size);
MS_ASSERT(ctx_->allocator != nullptr);
/*=============================gemm_out_============================*/
gemm_out_ = reinterpret_cast<float *>(
malloc(thread_count_ * TILE_NUM * input_unit_ * input_unit_ * oc4 * C4NUM * sizeof(float)));
ctx_->allocator->Malloc(thread_count_ * TILE_NUM * input_unit_ * input_unit_ * oc4 * C4NUM * sizeof(float)));
if (gemm_out_ == nullptr) {
MS_LOG(ERROR) << "malloc gemm_out_ failed.";
return RET_ERROR;
@ -194,35 +188,26 @@ int ConvolutionWinogradCPUKernel::InitTmpBuffer() {
/*=============================tmp_out_data_============================*/
int out_w_block = UP_DIV(output_w, output_unit_);
int out_h_block = UP_DIV(output_h, output_unit_);
tmp_out_data_ = reinterpret_cast<float *>(malloc(conv_param_->output_batch_ * out_w_block * out_h_block *
output_unit_ * output_unit_ * oc4 * C4NUM * sizeof(float)));
tmp_out_data_ =
reinterpret_cast<float *>(ctx_->allocator->Malloc(conv_param_->output_batch_ * out_w_block * out_h_block *
output_unit_ * output_unit_ * oc4 * C4NUM * sizeof(float)));
if (tmp_out_data_ == nullptr) {
MS_LOG(ERROR) << "malloc tmp_out_data_ failed.";
return RET_ERROR;
}
/*=============================tmp_data_============================*/
tmp_data_ = reinterpret_cast<float *>(malloc(thread_count_ * C4NUM * input_unit_ * input_unit_ * sizeof(float)));
tmp_data_ = reinterpret_cast<float *>(
ctx_->allocator->Malloc(thread_count_ * C4NUM * input_unit_ * input_unit_ * sizeof(float)));
if (tmp_data_ == nullptr) {
MS_LOG(ERROR) << "malloc tmp_data_ failed.";
return RET_ERROR;
}
memset(tmp_data_, 0, C4NUM * input_unit_ * input_unit_ * sizeof(float));
tmp_buffer_address_list_[0] = trans_input_;
tmp_buffer_address_list_[1] = gemm_out_;
tmp_buffer_address_list_[2] = tmp_out_data_;
tmp_buffer_address_list_[3] = tmp_data_;
/*=============================nhwc4_input_============================*/
size_t nhwc4_input_size =
ic4 * C4NUM * conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_ * sizeof(float);
nhwc4_input_ = malloc(nhwc4_input_size);
if (nhwc4_input_ == nullptr) {
MS_LOG(ERROR) << "malloc nhwc4_input_ failed.";
return RET_ERROR;
}
memset(nhwc4_input_, 0, nhwc4_input_size);
return RET_OK;
}
@ -253,37 +238,67 @@ int ConvolutionWinogradCPUKernel::Init() {
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int ConvolutionWinogradCPUKernel::ReSize() {
FreeTmpBuffer();
if (nhwc4_input_ != nullptr) {
free(nhwc4_input_);
nhwc4_input_ = nullptr;
}
auto ret = ConvolutionBaseCPUKernel::Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "ConvolutionBase init failed.";
return RET_ERROR;
}
kernel_unit_ = conv_param_->kernel_h_;
input_unit_ = output_unit_ + kernel_unit_ - 1;
conv_param_->input_unit_ = input_unit_;
conv_param_->output_unit_ = output_unit_;
ret = InitWeightBias();
auto ret = InitWeightBias();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init weight bias failed.";
return RET_ERROR;
}
// malloc tmp buffer
ret = InitTmpBuffer();
return ReSize();
}
int ConvolutionWinogradCPUKernel::ReSize() {
auto ret = ConvolutionBaseCPUKernel::CheckResizeValid();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init tmp buffer failed.";
MS_LOG(ERROR) << "Resize is invalid.";
return ret;
}
FreeTmpBuffer();
if (nhwc4_input_ != nullptr) {
free(nhwc4_input_);
nhwc4_input_ = nullptr;
}
if (trans_input_ != nullptr) {
free(trans_input_);
trans_input_ = nullptr;
}
ret = ConvolutionBaseCPUKernel::Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "ConvolutionBase init failed.";
return RET_ERROR;
}
kernel_unit_ = conv_param_->kernel_h_;
input_unit_ = output_unit_ + kernel_unit_ - 1;
conv_param_->input_unit_ = input_unit_;
conv_param_->output_unit_ = output_unit_;
/*=============================nhwc4_input_============================*/
int ic4 = UP_DIV(conv_param_->input_channel_, C4NUM);
size_t nhwc4_input_size =
ic4 * C4NUM * conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_ * sizeof(float);
nhwc4_input_ = malloc(nhwc4_input_size);
if (nhwc4_input_ == nullptr) {
MS_LOG(ERROR) << "malloc nhwc4_input_ failed.";
return RET_ERROR;
}
memset(nhwc4_input_, 0, nhwc4_input_size);
/*=============================trans_input_============================*/
size_t tile_buffer_size = thread_count_ * TILE_NUM * input_unit_ * input_unit_ * ic4 * C4NUM * sizeof(float);
trans_input_ = reinterpret_cast<float *>(malloc(tile_buffer_size));
if (trans_input_ == nullptr) {
MS_LOG(ERROR) << "malloc trans_input_ failed.";
return RET_ERROR;
}
memset(trans_input_, 0, tile_buffer_size);
ret = ConfigInputOutput();
if (ret != RET_OK) {
MS_LOG(ERROR) << "ConfigInputOutput failed.";
@ -319,17 +334,21 @@ int ConvolutionWinogradCPUKernel::Run() {
MS_LOG(ERROR) << "Prepare fail!ret: " << prepare_ret;
return prepare_ret;
}
// malloc tmp buffer
auto ret = InitTmpBuffer();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init tmp buffer failed.";
return RET_ERROR;
}
auto input_tensor = in_tensors_.at(kInputIndex);
auto ori_input_data = input_tensor->Data();
int in_batch = conv_param_->input_batch_;
int in_h = conv_param_->input_h_;
int in_w = conv_param_->input_w_;
int in_channel = conv_param_->input_channel_;
PackNHWCToNHWC4Fp32(ori_input_data, nhwc4_input_, in_batch, in_h * in_w, in_channel);
PackNHWCToNHWC4Fp32(ori_input_data, nhwc4_input_, conv_param_->input_batch_,
conv_param_->input_h_ * conv_param_->input_w_, conv_param_->input_channel_);
int error_code = LiteBackendParallelLaunch(ConvolutionWinogradImpl, this, thread_count_);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "conv winograd error error_code[" << error_code << "]";
FreeTmpBuffer();
return RET_ERROR;
}
@ -346,6 +365,7 @@ int ConvolutionWinogradCPUKernel::Run() {
UnPackWinogradOutput(tmp_out_data_, out_data, conv_param_->output_batch_, conv_param_->output_h_,
conv_param_->output_w_, conv_param_->output_channel_, output_unit_);
}
FreeTmpBuffer();
return RET_OK;
}
} // namespace mindspore::kernel

View File

@ -30,10 +30,18 @@ class ConvolutionWinogradCPUKernel : public ConvolutionBaseCPUKernel {
ConvolutionWinogradCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx,
const mindspore::lite::PrimitiveC *primitive, int output_unit)
: ConvolutionBaseCPUKernel(parameter, inputs, outputs, ctx, primitive), output_unit_(output_unit),
: ConvolutionBaseCPUKernel(parameter, inputs, outputs, ctx, primitive),
output_unit_(output_unit),
trans_weight_(nullptr) {}
~ConvolutionWinogradCPUKernel() override {
FreeTmpBuffer();
if (trans_weight_ != nullptr) {
delete trans_weight_;
trans_weight_ = nullptr;
}
if (trans_input_ != nullptr) {
free(trans_input_);
trans_input_ = nullptr;
}
};
int Init() override;
int ReSize() override;
@ -47,25 +55,17 @@ class ConvolutionWinogradCPUKernel : public ConvolutionBaseCPUKernel {
private:
void FreeTmpBuffer() {
if (tmp_data_ != nullptr) {
free(tmp_data_);
ctx_->allocator->Free(tmp_data_);
tmp_data_ = nullptr;
}
if (trans_input_ != nullptr) {
free(trans_input_);
trans_input_ = nullptr;
}
if (gemm_out_ != nullptr) {
free(gemm_out_);
ctx_->allocator->Free(gemm_out_);
gemm_out_ = nullptr;
}
if (tmp_out_data_ != nullptr) {
free(tmp_out_data_);
ctx_->allocator->Free(tmp_out_data_);
tmp_out_data_ = nullptr;
}
if (trans_weight_ != nullptr) {
delete trans_weight_;
trans_weight_ = nullptr;
}
}
int kernel_unit_;
int input_unit_;

View File

@ -44,6 +44,21 @@ void ProcessFilterUint8(int8_t *origin_weight, int16_t *dst_weight, ConvParamete
}
void Convolution3x3Int8CPUKernel::FreeTmpBuffer() {
if (block_unit_buffer_ != nullptr) {
ctx_->allocator->Free(block_unit_buffer_);
block_unit_buffer_ = nullptr;
}
if (tmp_dst_buffer_ != nullptr) {
ctx_->allocator->Free(tmp_dst_buffer_);
tmp_dst_buffer_ = nullptr;
}
if (tmp_out_ != nullptr) {
ctx_->allocator->Free(tmp_out_);
tmp_out_ = nullptr;
}
}
Convolution3x3Int8CPUKernel::~Convolution3x3Int8CPUKernel() {
if (transformed_filter_addr_ != nullptr) {
free(transformed_filter_addr_);
transformed_filter_addr_ = nullptr;
@ -56,26 +71,15 @@ void Convolution3x3Int8CPUKernel::FreeTmpBuffer() {
free(tile_buffer_);
tile_buffer_ = nullptr;
}
if (block_unit_buffer_ != nullptr) {
free(block_unit_buffer_);
block_unit_buffer_ = nullptr;
}
if (tmp_dst_buffer_ != nullptr) {
free(tmp_dst_buffer_);
tmp_dst_buffer_ = nullptr;
}
if (tmp_out_ != nullptr) {
free(tmp_out_);
tmp_out_ = nullptr;
}
FreeQuantParam();
}
Convolution3x3Int8CPUKernel::~Convolution3x3Int8CPUKernel() { FreeTmpBuffer(); }
int Convolution3x3Int8CPUKernel::InitWeightBias() {
auto input_channel = conv_param_->input_channel_;
auto output_channel = conv_param_->output_channel_;
auto filter_tensor = in_tensors_.at(kWeightIndex);
auto input_channel = filter_tensor->Channel();
auto output_channel = filter_tensor->Batch();
conv_param_->input_channel_ = input_channel;
conv_param_->output_channel_ = output_channel;
int iC8 = UP_DIV(input_channel, C8NUM);
int oC4 = UP_DIV(output_channel, C4NUM);
// init weight
@ -107,59 +111,35 @@ int Convolution3x3Int8CPUKernel::InitWeightBias() {
}
int Convolution3x3Int8CPUKernel::InitTmpBuffer() {
int ic8 = UP_DIV(conv_param_->input_channel_, C8NUM);
int oc4 = UP_DIV(conv_param_->output_channel_, C4NUM);
int in_batch = conv_param_->input_batch_;
int input_w = conv_param_->input_w_;
int input_h = conv_param_->input_h_;
int output_batch = conv_param_->output_batch_;
int output_w = conv_param_->output_w_;
int output_h = conv_param_->output_h_;
/*=============================tile_buffer_============================*/
size_t tile_buffer_size = thread_count_ * TILE_NUM * 16 * ic8 * C8NUM * sizeof(int16_t);
tile_buffer_ = reinterpret_cast<int16_t *>(malloc(tile_buffer_size));
if (tile_buffer_ == nullptr) {
MS_LOG(ERROR) << "malloc tile_buffer_ failed.";
return RET_ERROR;
}
memset(tile_buffer_, 0, tile_buffer_size);
MS_ASSERT(ctx_->allocator != nullptr);
/*=============================block_unit_buffer_============================*/
size_t block_unit_buffer_size = thread_count_ * 4 * 4 * C8NUM * sizeof(int16_t);
block_unit_buffer_ = reinterpret_cast<int16_t *>(malloc(block_unit_buffer_size));
block_unit_buffer_ = reinterpret_cast<int16_t *>(ctx_->allocator->Malloc(block_unit_buffer_size));
if (block_unit_buffer_ == nullptr) {
MS_LOG(ERROR) << "malloc block_unit_buffer_ failed.";
return RET_ERROR;
}
memset(block_unit_buffer_, 0, block_unit_buffer_size);
/*=============================tmp_dst_buffer_============================*/
size_t tmp_dst_buffer_size = thread_count_ * TILE_NUM * 16 * oc4 * C4NUM * sizeof(int32_t);
tmp_dst_buffer_ = reinterpret_cast<int32_t *>(malloc(tmp_dst_buffer_size));
tmp_dst_buffer_ = reinterpret_cast<int32_t *>(ctx_->allocator->Malloc(tmp_dst_buffer_size));
if (tmp_dst_buffer_ == nullptr) {
MS_LOG(ERROR) << "malloc tmp_dst_buffer_ failed.";
return RET_ERROR;
}
memset(tmp_dst_buffer_, 0, tmp_dst_buffer_size);
/*=============================tmp_out_============================*/
size_t tmp_out_size = oc4 * C4NUM * output_batch * output_w * output_h * sizeof(uint8_t);
tmp_out_ = reinterpret_cast<int8_t *>(malloc(tmp_out_size));
tmp_out_ = reinterpret_cast<int8_t *>(ctx_->allocator->Malloc(tmp_out_size));
if (tmp_out_ == nullptr) {
MS_LOG(ERROR) << "malloc tmp_out_ failed.";
return RET_ERROR;
}
memset(tmp_out_, 0, tmp_out_size);
/*=============================input_data_============================*/
size_t c8_input_size = in_batch * input_h * input_w * ic8 * C8NUM * sizeof(int16_t);
input_data_ = reinterpret_cast<int16_t *>(malloc(c8_input_size));
if (input_data_ == nullptr) {
MS_LOG(ERROR) << "malloc input_data_ failed.";
return RET_ERROR;
}
memset(input_data_, 0, c8_input_size);
return RET_OK;
}
@ -172,18 +152,7 @@ int Convolution3x3Int8CPUKernel::Init() {
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int Convolution3x3Int8CPUKernel::ReSize() {
FreeTmpBuffer();
auto ret = ConvolutionBaseCPUKernel::Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "ConvolutionBase init failed.";
return RET_ERROR;
}
ret = SetQuantParam();
auto ret = SetQuantParam();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Set quant param failed.";
return ret;
@ -193,14 +162,53 @@ int Convolution3x3Int8CPUKernel::ReSize() {
MS_LOG(ERROR) << "Init weight bias failed.";
return RET_ERROR;
}
// init tmp input, output
ret = InitTmpBuffer();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init tmp buffer failed.";
return RET_ERROR;
}
// config input output
ConfigInputOutput();
return ReSize();
}
int Convolution3x3Int8CPUKernel::ReSize() {
auto ret = ConvolutionBaseCPUKernel::CheckResizeValid();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Resize is invalid.";
return ret;
}
FreeTmpBuffer();
if (input_data_ != nullptr) {
free(input_data_);
input_data_ = nullptr;
}
if (tile_buffer_ != nullptr) {
free(tile_buffer_);
tile_buffer_ = nullptr;
}
ret = ConvolutionBaseCPUKernel::Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "ConvolutionBase init failed.";
return RET_ERROR;
}
/*=============================input_data_============================*/
int ic8 = UP_DIV(conv_param_->input_channel_, C8NUM);
size_t c8_input_size =
conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_ * ic8 * C8NUM * sizeof(int16_t);
input_data_ = reinterpret_cast<int16_t *>(malloc(c8_input_size));
if (input_data_ == nullptr) {
MS_LOG(ERROR) << "malloc input_data_ failed.";
return RET_ERROR;
}
memset(input_data_, 0, c8_input_size);
/*=============================tile_buffer_============================*/
size_t tile_buffer_size = thread_count_ * TILE_NUM * C16NUM * ic8 * C8NUM * sizeof(int16_t);
tile_buffer_ = reinterpret_cast<int16_t *>(malloc(tile_buffer_size));
if (tile_buffer_ == nullptr) {
MS_LOG(ERROR) << "malloc tile_buffer_ failed.";
return RET_ERROR;
}
memset(tile_buffer_, 0, tile_buffer_size);
return RET_OK;
}
@ -227,12 +235,19 @@ int Convolution3x3Int8CPUKernel::Run() {
MS_LOG(ERROR) << "Prepare failed.";
return RET_ERROR;
}
// malloc tmp buffer
ret = InitTmpBuffer();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init tmp buffer failed.";
return RET_ERROR;
}
auto input_addr = reinterpret_cast<int8_t *>(in_tensors_.at(kInputIndex)->Data());
PackInputToC8Int8(input_addr, input_data_, conv_param_);
int error_code = LiteBackendParallelLaunch(Convolution3x3Int8Impl, this, thread_count_);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "conv3x3 int8 error error_code[" << error_code << "]";
FreeTmpBuffer();
return RET_ERROR;
}
// get real output
@ -240,6 +255,7 @@ int Convolution3x3Int8CPUKernel::Run() {
auto out_data = reinterpret_cast<int8_t *>(out_tensor->Data());
PackNC4HW4ToNHWCInt8(tmp_out_, out_data, conv_param_->output_batch_, conv_param_->output_h_ * conv_param_->output_w_,
conv_param_->output_channel_);
FreeTmpBuffer();
return RET_OK;
}
} // namespace mindspore::kernel

View File

@ -60,12 +60,15 @@ void ConvolutionInt8CPUKernel::CheckSupportOptimize() {
}
int ConvolutionInt8CPUKernel::InitWeightBias() {
int kernel_h = conv_param_->kernel_h_;
int kernel_w = conv_param_->kernel_w_;
int in_channel = conv_param_->input_channel_;
int ic4 = UP_DIV(in_channel, C4NUM);
int out_channel = conv_param_->output_channel_;
int oc4 = UP_DIV(out_channel, C4NUM);
auto filter_tensor = in_tensors_.at(kWeightIndex);
auto input_channel = filter_tensor->Channel();
auto output_channel = filter_tensor->Batch();
int kernel_h = filter_tensor->Height();
int kernel_w = filter_tensor->Width();
conv_param_->input_channel_ = input_channel;
conv_param_->output_channel_ = output_channel;
int ic4 = UP_DIV(input_channel, C4NUM);
int oc4 = UP_DIV(output_channel, C4NUM);
int kernel_plane = kernel_h * kernel_w;
int plane_c4 = UP_DIV(kernel_plane, C4NUM);
int pack_weight_size = oc4 * ic4 * C4NUM * C4NUM * plane_c4 * C4NUM;
@ -80,8 +83,8 @@ int ConvolutionInt8CPUKernel::InitWeightBias() {
return RET_ERROR;
}
memset(packed_weight_, 0, pack_weight_size);
auto *weight_sum = reinterpret_cast<int32_t *>(malloc(sizeof(int32_t) * out_channel));
for (int i = 0; i < out_channel; i++) weight_sum[i] = 0;
auto *weight_sum = reinterpret_cast<int32_t *>(malloc(sizeof(int32_t) * output_channel));
for (int i = 0; i < output_channel; i++) weight_sum[i] = 0;
PackWeightInt8(origin_weight, conv_param_, packed_weight_, weight_sum);
// init bias
@ -93,42 +96,22 @@ int ConvolutionInt8CPUKernel::InitWeightBias() {
memset(bias_data_, 0, oc4 * C4NUM * sizeof(int32_t));
if (in_tensors_.size() == kInputSize2) {
auto ori_bias = reinterpret_cast<int32_t *>(in_tensors_.at(kBiasIndex)->Data());
memcpy(bias_data_, ori_bias, out_channel * sizeof(int32_t));
memcpy(bias_data_, ori_bias, output_channel * sizeof(int32_t));
} else {
MS_ASSERT(in_tensors_.size() == kInputSize1);
}
auto *bias_data = reinterpret_cast<int32_t *>(bias_data_);
int c4_kernel_plane_size = kernel_plane * ic4 * C4NUM;
if (conv_quant_arg_->per_channel_ & FILTER_PER_CHANNEL) {
for (int i = 0; i < out_channel; i++) {
for (int i = 0; i < output_channel; i++) {
bias_data[i] += filter_arg[i].zp_ * input_zp * c4_kernel_plane_size - weight_sum[i] * input_zp;
}
} else {
for (int i = 0; i < out_channel; i++) {
for (int i = 0; i < output_channel; i++) {
bias_data[i] += filter_arg[0].zp_ * input_zp * c4_kernel_plane_size - weight_sum[i] * input_zp;
}
}
free(weight_sum);
return RET_OK;
}
int ConvolutionInt8CPUKernel::InitTmpBuffer() {
int output_count = conv_param_->output_h_ * conv_param_->output_w_;
int output_tile_count = UP_DIV(output_count, tile_num_);
int in_channel = conv_param_->input_channel_;
int ic4 = UP_DIV(in_channel, C4NUM);
int kernel_plane = conv_param_->kernel_h_ * conv_param_->kernel_w_;
int plane_c4 = UP_DIV(kernel_plane, C4NUM);
int unit_size = plane_c4 * C4NUM * ic4 * C4NUM;
int packed_input_size = output_tile_count * tile_num_ * unit_size;
/*=============================packed_input_============================*/
packed_input_ = reinterpret_cast<int8_t *>(malloc(conv_param_->input_batch_ * packed_input_size));
if (packed_input_ == nullptr) {
MS_LOG(ERROR) << "malloc packed_input_ failed.";
return RET_ERROR;
}
memset(packed_input_, 0, conv_param_->input_batch_ * packed_input_size);
/*=============================input_sum_============================*/
size_t input_sum_size;
@ -137,47 +120,45 @@ int ConvolutionInt8CPUKernel::InitTmpBuffer() {
} else {
input_sum_size = tile_num_ * thread_count_ * sizeof(int32_t);
}
input_sum_ = reinterpret_cast<int32_t *>(malloc(input_sum_size));
input_sum_ = reinterpret_cast<int32_t *>(ctx_->allocator->Malloc(input_sum_size));
if (input_sum_ == nullptr) {
MS_LOG(ERROR) << "malloc input_sum_ failed.";
return RET_ERROR;
}
memset(input_sum_, 0, tile_num_ * thread_count_ * sizeof(int32_t));
return RET_OK;
}
int ConvolutionInt8CPUKernel::InitTmpBuffer() {
MS_ASSERT(ctx_->allocator != nullptr);
/*=============================tmp_dst_============================*/
size_t tmp_dst_size = thread_count_ * tile_num_ * conv_param_->output_channel_ * sizeof(int32_t);
tmp_dst_ = reinterpret_cast<int32_t *>(malloc(tmp_dst_size));
tmp_dst_ = reinterpret_cast<int32_t *>(ctx_->allocator->Malloc(tmp_dst_size));
if (tmp_dst_ == nullptr) {
MS_LOG(ERROR) << "malloc tmp_dst_ failed.";
return RET_ERROR;
}
memset(tmp_dst_, 0, tmp_dst_size);
/*=============================tmp_out_============================*/
tmp_out_ = reinterpret_cast<int8_t *>(malloc(thread_count_ * tile_num_ * conv_param_->output_channel_));
tmp_out_ =
reinterpret_cast<int8_t *>(ctx_->allocator->Malloc(thread_count_ * tile_num_ * conv_param_->output_channel_));
if (tmp_out_ == nullptr) {
MS_LOG(ERROR) << "malloc tmp_out_ failed.";
return RET_ERROR;
}
/*=============================nhwc4_input_============================*/
size_t nhwc4_input_size = ic4 * C4NUM * conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_;
nhwc4_input_ = malloc(nhwc4_input_size);
if (nhwc4_input_ == nullptr) {
MS_LOG(ERROR) << "malloc nhwc4 input failed.";
return RET_ERROR;
}
memset(nhwc4_input_, 0, nhwc4_input_size);
return RET_OK;
}
int ConvolutionInt8CPUKernel::InitWeightBiasOpt() {
int kernel_h = conv_param_->kernel_h_;
int kernel_w = conv_param_->kernel_w_;
int in_channel = conv_param_->input_channel_;
int ic4 = UP_DIV(in_channel, C4NUM);
int out_channel = conv_param_->output_channel_;
int oc4 = UP_DIV(out_channel, C4NUM);
auto filter_tensor = in_tensors_.at(kWeightIndex);
auto input_channel = filter_tensor->Channel();
auto output_channel = filter_tensor->Batch();
int kernel_h = filter_tensor->Height();
int kernel_w = filter_tensor->Width();
conv_param_->input_channel_ = input_channel;
conv_param_->output_channel_ = output_channel;
int ic4 = UP_DIV(input_channel, C4NUM);
int oc4 = UP_DIV(output_channel, C4NUM);
int kernel_plane = kernel_h * kernel_w;
int pack_weight_size = oc4 * ic4 * C4NUM * C4NUM * kernel_plane;
auto filter_arg = conv_param_->conv_quant_arg_.filter_quant_args_;
@ -191,8 +172,8 @@ int ConvolutionInt8CPUKernel::InitWeightBiasOpt() {
return RET_ERROR;
}
memset(packed_weight_, 0, pack_weight_size);
auto *weight_sum = reinterpret_cast<int32_t *>(malloc(sizeof(int32_t) * out_channel));
for (int i = 0; i < out_channel; i++) weight_sum[i] = 0;
auto *weight_sum = reinterpret_cast<int32_t *>(malloc(sizeof(int32_t) * output_channel));
for (int i = 0; i < output_channel; i++) weight_sum[i] = 0;
PackWeightInt8Opt(origin_weight, conv_param_, packed_weight_, weight_sum);
// init bias
@ -204,41 +185,22 @@ int ConvolutionInt8CPUKernel::InitWeightBiasOpt() {
memset(bias_data_, 0, oc4 * C4NUM * sizeof(int32_t));
if (in_tensors_.size() == kInputSize2) {
auto ori_bias = reinterpret_cast<int32_t *>(in_tensors_.at(kBiasIndex)->Data());
memcpy(bias_data_, ori_bias, out_channel * sizeof(int32_t));
memcpy(bias_data_, ori_bias, output_channel * sizeof(int32_t));
} else {
MS_ASSERT(in_tensors_.size() == kInputSize1);
}
auto *bias_data = reinterpret_cast<int32_t *>(bias_data_);
int c4_kernel_plane_size = kernel_plane * ic4 * C4NUM;
if (conv_quant_arg_->per_channel_ & FILTER_PER_CHANNEL) {
for (int i = 0; i < out_channel; i++) {
for (int i = 0; i < output_channel; i++) {
bias_data[i] += filter_arg[i].zp_ * input_zp * c4_kernel_plane_size - weight_sum[i] * input_zp;
}
} else {
for (int i = 0; i < out_channel; i++) {
for (int i = 0; i < output_channel; i++) {
bias_data[i] += filter_arg[0].zp_ * input_zp * c4_kernel_plane_size - weight_sum[i] * input_zp;
}
}
free(weight_sum);
return RET_OK;
}
int ConvolutionInt8CPUKernel::InitTmpBufferOpt() {
int output_count = conv_param_->output_h_ * conv_param_->output_w_;
int output_tile_count = UP_DIV(output_count, tile_num_);
int in_channel = conv_param_->input_channel_;
int ic4 = UP_DIV(in_channel, C4NUM);
int kernel_plane = conv_param_->kernel_h_ * conv_param_->kernel_w_;
int unit_size = kernel_plane * ic4 * C4NUM;
int packed_input_size = output_tile_count * tile_num_ * unit_size;
/*=============================packed_input_============================*/
packed_input_ = reinterpret_cast<int8_t *>(malloc(conv_param_->input_batch_ * packed_input_size));
if (packed_input_ == nullptr) {
MS_LOG(ERROR) << "malloc packed_input_ failed.";
return RET_ERROR;
}
memset(packed_input_, 0, conv_param_->input_batch_ * packed_input_size);
/*=============================input_sum_============================*/
size_t input_sum_size;
@ -253,31 +215,26 @@ int ConvolutionInt8CPUKernel::InitTmpBufferOpt() {
return RET_ERROR;
}
memset(input_sum_, 0, tile_num_ * thread_count_ * sizeof(int32_t));
return RET_OK;
}
int ConvolutionInt8CPUKernel::InitTmpBufferOpt() {
MS_ASSERT(ctx_->allocator != nullptr);
/*=============================tmp_dst_============================*/
size_t tmp_dst_size = thread_count_ * tile_num_ * conv_param_->output_channel_ * sizeof(int32_t);
tmp_dst_ = reinterpret_cast<int32_t *>(malloc(tmp_dst_size));
tmp_dst_ = reinterpret_cast<int32_t *>(ctx_->allocator->Malloc(tmp_dst_size));
if (tmp_dst_ == nullptr) {
MS_LOG(ERROR) << "malloc tmp_dst_ failed.";
return RET_ERROR;
}
memset(tmp_dst_, 0, tmp_dst_size);
/*=============================tmp_out_============================*/
tmp_out_ = reinterpret_cast<int8_t *>(malloc(thread_count_ * tile_num_ * conv_param_->output_channel_));
tmp_out_ =
reinterpret_cast<int8_t *>(ctx_->allocator->Malloc(thread_count_ * tile_num_ * conv_param_->output_channel_));
if (tmp_out_ == nullptr) {
MS_LOG(ERROR) << "malloc tmp_out_ failed.";
return RET_ERROR;
}
/*=============================nhwc4_input_============================*/
size_t nhwc4_input_size = ic4 * C4NUM * conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_;
nhwc4_input_ = malloc(nhwc4_input_size);
if (nhwc4_input_ == nullptr) {
MS_LOG(ERROR) << "malloc nhwc4 input failed.";
return RET_ERROR;
}
memset(nhwc4_input_, 0, nhwc4_input_size);
return RET_OK;
}
@ -296,62 +253,79 @@ int ConvolutionInt8CPUKernel::Init() {
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int ConvolutionInt8CPUKernel::InitOpt() {
auto ret = InitWeightBiasOpt();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init weight bias failed.";
return RET_ERROR;
}
// init tmp input, output
ret = InitTmpBufferOpt();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init tmp buffer failed.";
return RET_ERROR;
}
return RET_OK;
}
int ConvolutionInt8CPUKernel::ReSize() {
FreeTmpBuffer();
auto ret = ConvolutionBaseCPUKernel::Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "ConvolutionBase init failed.";
return RET_ERROR;
}
// config input output
ConfigInputOutput();
CheckSupportOptimize();
ret = SetQuantParam();
auto ret = SetQuantParam();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Set quant param failed.";
return ret;
}
// init for opt
if (support_optimize_) {
ret = InitOpt();
ret = InitWeightBiasOpt();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Initialization for optimized int8 conv failed.";
return RET_ERROR;
}
return RET_OK;
} else {
// init for situation that not support sdot
ret = InitWeightBias();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init weight bias failed.";
return RET_ERROR;
}
}
// init for situation that not support sdot
ret = InitWeightBias();
return ReSize();
}
int ConvolutionInt8CPUKernel::ReSize() {
auto ret = ConvolutionBaseCPUKernel::CheckResizeValid();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init weight bias failed.";
MS_LOG(ERROR) << "Resize is invalid.";
return ret;
}
FreeTmpBuffer();
if (nhwc4_input_ != nullptr) {
free(nhwc4_input_);
nhwc4_input_ = nullptr;
}
if (packed_input_ != nullptr) {
free(packed_input_);
packed_input_ = nullptr;
}
ret = ConvolutionBaseCPUKernel::Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "ConvolutionBase init failed.";
return RET_ERROR;
}
// init tmp input, output
ret = InitTmpBuffer();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init tmp buffer failed.";
/*=============================nhwc4_input_============================*/
int ic4 = UP_DIV(conv_param_->input_channel_, C4NUM);
size_t nhwc4_input_size = ic4 * C4NUM * conv_param_->input_batch_ * conv_param_->input_h_ * conv_param_->input_w_;
nhwc4_input_ = malloc(nhwc4_input_size);
if (nhwc4_input_ == nullptr) {
MS_LOG(ERROR) << "malloc nhwc4 input failed.";
return RET_ERROR;
}
memset(nhwc4_input_, 0, nhwc4_input_size);
/*=============================packed_input_============================*/
int output_count = conv_param_->output_h_ * conv_param_->output_w_;
int output_tile_count = UP_DIV(output_count, tile_num_);
int kernel_plane = conv_param_->kernel_h_ * conv_param_->kernel_w_;
int plane_c4 = UP_DIV(kernel_plane, C4NUM);
int unit_size = plane_c4 * C4NUM * ic4 * C4NUM;
int packed_input_size = output_tile_count * tile_num_ * unit_size;
packed_input_ = reinterpret_cast<int8_t *>(malloc(conv_param_->input_batch_ * packed_input_size));
if (packed_input_ == nullptr) {
MS_LOG(ERROR) << "malloc packed_input_ failed.";
return RET_ERROR;
}
memset(packed_input_, 0, conv_param_->input_batch_ * packed_input_size);
return RET_OK;
}
@ -369,7 +343,7 @@ int ConvolutionInt8CPUKernel::RunImpl(int task_id) {
return RET_OK;
}
int ConvolutionInt8Impl(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
int ConvolutionInt8Impl(int task_id, LiteParallelGroupEnv *mpenv, void *cdata) {
auto conv = reinterpret_cast<ConvolutionInt8CPUKernel *>(cdata);
auto error_code = conv->RunImpl(task_id);
if (error_code != RET_OK) {
@ -385,19 +359,33 @@ int ConvolutionInt8CPUKernel::Run() {
MS_LOG(ERROR) << "Prepare failed.";
return RET_ERROR;
}
if (support_optimize_) {
ret = InitTmpBufferOpt();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init tmp buffer failed.";
return RET_ERROR;
}
} else {
// init tmp input, output
ret = InitTmpBuffer();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init tmp buffer failed.";
return RET_ERROR;
}
}
auto input_tensor = in_tensors_.at(kInputIndex);
auto ori_input_data = input_tensor->Data();
int in_batch = conv_param_->input_batch_;
int in_h = conv_param_->input_h_;
int in_w = conv_param_->input_w_;
int in_channel = conv_param_->input_channel_;
convert_func_(ori_input_data, nhwc4_input_, in_batch, in_h * in_w, in_channel);
convert_func_(ori_input_data, nhwc4_input_, conv_param_->input_batch_, conv_param_->input_h_ * conv_param_->input_w_,
conv_param_->input_channel_);
int error_code = LiteBackendParallelLaunch(ConvolutionInt8Impl, this, thread_count_);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "conv int8 error error_code[" << error_code << "]";
FreeTmpBuffer();
return RET_ERROR;
}
FreeTmpBuffer();
return RET_OK;
}

View File

@ -30,22 +30,8 @@ class ConvolutionInt8CPUKernel : public ConvolutionBaseCPUKernel {
const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx,
const mindspore::lite::PrimitiveC *primitive)
: ConvolutionBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
~ConvolutionInt8CPUKernel() override { FreeTmpBuffer(); }
int Init() override;
int ReSize() override;
int Run() override;
int RunImpl(int task_id);
void CheckSupportOptimize();
int InitOpt();
int InitWeightBiasOpt();
int InitTmpBufferOpt();
int InitWeightBias();
int InitTmpBuffer();
void ConfigInputOutput();
private:
void FreeTmpBuffer() {
~ConvolutionInt8CPUKernel() override {
FreeQuantParam();
if (packed_weight_ != nullptr) {
free(packed_weight_);
packed_weight_ = nullptr;
@ -58,15 +44,29 @@ class ConvolutionInt8CPUKernel : public ConvolutionBaseCPUKernel {
free(input_sum_);
input_sum_ = nullptr;
}
}
int Init() override;
int ReSize() override;
int Run() override;
int RunImpl(int task_id);
void CheckSupportOptimize();
int InitWeightBiasOpt();
int InitTmpBufferOpt();
int InitWeightBias();
int InitTmpBuffer();
void ConfigInputOutput();
private:
void FreeTmpBuffer() {
if (tmp_dst_ != nullptr) {
free(tmp_dst_);
ctx_->allocator->Free(tmp_dst_);
tmp_dst_ = nullptr;
}
if (tmp_out_ != nullptr) {
free(tmp_out_);
ctx_->allocator->Free(tmp_out_);
tmp_out_ = nullptr;
}
FreeQuantParam();
}
bool support_optimize_ = true;
int8_t *packed_weight_ = nullptr;

View File

@ -228,10 +228,9 @@ void Im2ColPackUnitFp32(const float *input_data, ConvParameter *conv_param, floa
#ifdef ENABLE_NEON
vst1q_f32(packed_input + channel_block_offset, vld1q_f32(input_data + channel_block_stride));
#else
(packed_input + channel_block_offset)[0] = (input_data + channel_block_stride)[0];
(packed_input + channel_block_offset)[1] = (input_data + channel_block_stride)[1];
(packed_input + channel_block_offset)[2] = (input_data + channel_block_stride)[2];
(packed_input + channel_block_offset)[3] = (input_data + channel_block_stride)[3];
for (int k = 0; k < C4NUM; ++k) {
(packed_input + channel_block_offset)[k] = (input_data + channel_block_stride)[k];
}
#endif
} // channel_block loop
} // kernel_w loop
@ -349,10 +348,9 @@ void Im2ColPackUnitInt8Opt(const int8_t *input_data, int8_t *packed_input, int r
for (int m = 0; m < ic4; m++) {
int channel_block_stride = input_x_stride + m * C4NUM;
int channel_block_offset = input_plane_offset + m * tile_num * C4NUM;
(packed_input + channel_block_offset)[0] = (input_data + channel_block_stride)[0];
(packed_input + channel_block_offset)[1] = (input_data + channel_block_stride)[1];
(packed_input + channel_block_offset)[2] = (input_data + channel_block_stride)[2];
(packed_input + channel_block_offset)[3] = (input_data + channel_block_stride)[3];
for (int k = 0; k < C4NUM; k++) {
(packed_input + channel_block_offset)[k] = (input_data + channel_block_stride)[k];
}
} // channel_block loop
} // kernel_w loop
} // kernel_h loop