support get_dist_args
This commit is contained in:
parent
831d3a69d4
commit
d4df6f82ea
|
@ -153,6 +153,16 @@ class Bernoulli(Distribution):
|
|||
"""
|
||||
return self._probs
|
||||
|
||||
def _get_dist_type(self):
|
||||
return "Bernoulli"
|
||||
|
||||
def _get_dist_args(self, probs1=None):
|
||||
if probs1 is not None:
|
||||
self.checktensor(probs1, 'probs')
|
||||
else:
|
||||
probs1 = self.probs
|
||||
return (probs1,)
|
||||
|
||||
def _mean(self, probs1=None):
|
||||
r"""
|
||||
.. math::
|
||||
|
|
|
@ -169,6 +169,16 @@ class Categorical(Distribution):
|
|||
"""
|
||||
return self._probs
|
||||
|
||||
def _get_dist_type(self):
|
||||
return "Categorical"
|
||||
|
||||
def _get_dist_args(self, probs=None):
|
||||
if probs is not None:
|
||||
self.checktensor(probs, 'probs')
|
||||
else:
|
||||
probs = self.probs
|
||||
return (probs,)
|
||||
|
||||
def _mean(self, probs=None):
|
||||
r"""
|
||||
.. math::
|
||||
|
|
|
@ -344,6 +344,33 @@ class Distribution(Cell):
|
|||
else:
|
||||
self._call_cross_entropy = self._raise_not_implemented_error('cross_entropy')
|
||||
|
||||
def _get_dist_args(self, *args, **kwargs):
|
||||
return raise_not_implemented_util('get_dist_args', self.name, *args, **kwargs)
|
||||
|
||||
def get_dist_args(self, *args, **kwargs):
|
||||
"""
|
||||
Check the availability and validity of default parameters and `dist_spec_args`.
|
||||
|
||||
Args:
|
||||
*args (list): the list of positional arguments forwarded to subclasses.
|
||||
**kwargs (dictionary): the dictionary of keyword arguments forwarded to subclasses.
|
||||
|
||||
Note:
|
||||
`dist_spec_args` must be passed in through list or dictionary. The order of `dist_spec_args`
|
||||
should follow the initialization order of default parameters through `_add_parameter`.
|
||||
If some `dist_spec_args` is None, the corresponding default parameter is returned.
|
||||
"""
|
||||
return self._get_dist_args(*args, **kwargs)
|
||||
|
||||
def _get_dist_type(self, *args, **kwargs):
|
||||
return raise_not_implemented_util('get_dist_type', self.name, *args, **kwargs)
|
||||
|
||||
def get_dist_type(self, *args, **kwargs):
|
||||
"""
|
||||
Return the type of the distribution.
|
||||
"""
|
||||
return self._get_dist_type(*args, **kwargs)
|
||||
|
||||
def _raise_not_implemented_error(self, func_name):
|
||||
name = self.name
|
||||
def raise_error(*args, **kwargs):
|
||||
|
@ -721,4 +748,8 @@ class Distribution(Cell):
|
|||
return self._call_cross_entropy(*args, **kwargs)
|
||||
if name == 'sample':
|
||||
return self._sample(*args, **kwargs)
|
||||
if name == 'get_dist_args':
|
||||
return self._get_dist_args(*args, **kwargs)
|
||||
if name == 'get_dist_type':
|
||||
return self._get_dist_type(*args, **kwargs)
|
||||
return raise_not_implemented_util(name, self.name, *args, **kwargs)
|
||||
|
|
|
@ -157,6 +157,16 @@ class Exponential(Distribution):
|
|||
"""
|
||||
return self._rate
|
||||
|
||||
def _get_dist_type(self):
|
||||
return "Exponential"
|
||||
|
||||
def _get_dist_args(self, rate=None):
|
||||
if rate is not None:
|
||||
self.checktensor(rate, 'rate')
|
||||
else:
|
||||
rate = self.rate
|
||||
return (rate,)
|
||||
|
||||
def _mean(self, rate=None):
|
||||
r"""
|
||||
.. math::
|
||||
|
|
|
@ -162,6 +162,16 @@ class Geometric(Distribution):
|
|||
"""
|
||||
return self._probs
|
||||
|
||||
def _get_dist_type(self):
|
||||
return "Geometric"
|
||||
|
||||
def _get_dist_args(self, probs1=None):
|
||||
if probs1 is not None:
|
||||
self.checktensor(probs1, 'probs')
|
||||
else:
|
||||
probs1 = self.probs
|
||||
return (probs1,)
|
||||
|
||||
def _mean(self, probs1=None):
|
||||
r"""
|
||||
.. math::
|
||||
|
|
|
@ -109,7 +109,7 @@ class Gumbel(TransformedDistribution):
|
|||
bijector=msb.Invert(gumbel_cdf),
|
||||
seed=seed, name=name)
|
||||
|
||||
self._parameter_type = gumbel_cdf.parameter_type
|
||||
self.parameter_type = gumbel_cdf.parameter_type
|
||||
self._broadcast_shape = gumbel_cdf.event_shape
|
||||
if self._broadcast_shape != ():
|
||||
self._is_scalar_batch = False
|
||||
|
@ -146,6 +146,20 @@ class Gumbel(TransformedDistribution):
|
|||
str_info = f'batch_shape = {self._broadcast_shape}'
|
||||
return str_info
|
||||
|
||||
def _get_dist_type(self):
|
||||
return "Gumbel"
|
||||
|
||||
def _get_dist_args(self, loc=None, scale=None):
|
||||
if loc is not None:
|
||||
self.checktensor(loc, 'loc')
|
||||
else:
|
||||
loc = self.loc
|
||||
if scale is not None:
|
||||
self.checktensor(scale, 'scale')
|
||||
else:
|
||||
scale = self.scale
|
||||
return loc, scale
|
||||
|
||||
def _mean(self):
|
||||
r"""
|
||||
The mean of the distribution.
|
||||
|
|
|
@ -161,6 +161,20 @@ class LogNormal(msd.TransformedDistribution):
|
|||
"""Distribution parameter for the pre-transformed standard deviation."""
|
||||
return self.distribution("sd")
|
||||
|
||||
def _get_dist_type(self):
|
||||
return "LogNormal"
|
||||
|
||||
def _get_dist_args(self, loc=None, scale=None):
|
||||
if loc is not None:
|
||||
self.checktensor(loc, 'loc')
|
||||
else:
|
||||
loc = self.distribution("mean")
|
||||
if scale is not None:
|
||||
self.checktensor(scale, 'scale')
|
||||
else:
|
||||
scale = self.distribution("sd")
|
||||
return loc, scale
|
||||
|
||||
def extend_repr(self):
|
||||
if self.is_scalar_batch:
|
||||
s = f'loc = {self._mean_value}, scale = {self._sd_value}'
|
||||
|
|
|
@ -175,6 +175,20 @@ class Logistic(Distribution):
|
|||
"""
|
||||
return self._scale
|
||||
|
||||
def _get_dist_type(self):
|
||||
return "Logistic"
|
||||
|
||||
def _get_dist_args(self, loc=None, scale=None):
|
||||
if loc is not None:
|
||||
self.checktensor(loc, 'loc')
|
||||
else:
|
||||
loc = self.loc
|
||||
if scale is not None:
|
||||
self.checktensor(scale, 'scale')
|
||||
else:
|
||||
scale = self.scale
|
||||
return loc, scale
|
||||
|
||||
def _mean(self, loc=None, scale=None):
|
||||
"""
|
||||
The mean of the distribution.
|
||||
|
|
|
@ -154,6 +154,20 @@ class Normal(Distribution):
|
|||
s = f'batch_shape = {self._broadcast_shape}'
|
||||
return s
|
||||
|
||||
def _get_dist_type(self):
|
||||
return "Normal"
|
||||
|
||||
def _get_dist_args(self, mean=None, sd=None):
|
||||
if mean is not None:
|
||||
self.checktensor(mean, 'mean')
|
||||
else:
|
||||
mean = self._mean_value
|
||||
if sd is not None:
|
||||
self.checktensor(sd, 'sd')
|
||||
else:
|
||||
sd = self._sd_value
|
||||
return mean, sd
|
||||
|
||||
def _mean(self, mean=None, sd=None):
|
||||
"""
|
||||
The mean of the distribution.
|
||||
|
|
|
@ -173,6 +173,20 @@ class Uniform(Distribution):
|
|||
"""
|
||||
return self._high
|
||||
|
||||
def _get_dist_type(self):
|
||||
return "Uniform"
|
||||
|
||||
def _get_dist_args(self, low=None, high=None):
|
||||
if low is not None:
|
||||
self.checktensor(low, 'low')
|
||||
else:
|
||||
low = self.low
|
||||
if high is not None:
|
||||
self.checktensor(high, 'high')
|
||||
else:
|
||||
high = self.high
|
||||
return high, low
|
||||
|
||||
def _range(self, low=None, high=None):
|
||||
r"""
|
||||
Return the range of the distribution.
|
||||
|
|
|
@ -0,0 +1,101 @@
|
|||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""test cases for Normal distribution"""
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from mindspore import Tensor
|
||||
from mindspore import dtype
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
class Net1(nn.Cell):
|
||||
"""
|
||||
Test class: Normal distribution. `dist_spec_args` are `mean`, `sd`.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(Net1, self).__init__()
|
||||
self.normal = msd.Normal(dtype=dtype.float32)
|
||||
self.normal1 = msd.Normal(0.0, 1.0, dtype=dtype.float32)
|
||||
self.normal2 = msd.Normal(3.0, 4.0, dtype=dtype.float32)
|
||||
|
||||
def construct(self, value, mean, sd, mean_a, sd_a):
|
||||
args_list = self.normal.get_dist_args(mean, sd)
|
||||
prob = self.normal1.prob(value, *args_list)
|
||||
args_list1 = self.normal.get_dist_args()
|
||||
prob1 = self.normal2.prob(value, *args_list1)
|
||||
|
||||
args_list2 = self.normal1.get_dist_args()
|
||||
dist_type = self.normal1.get_dist_type()
|
||||
kl_loss = self.normal2.kl_loss(dist_type, *args_list2)
|
||||
|
||||
args_list3 = self.normal.get_dist_args(mean_a, sd_a)
|
||||
dist_type = self.normal1.get_dist_type()
|
||||
kl_loss1 = self.normal2.kl_loss(dist_type, *args_list3)
|
||||
return prob, prob1, kl_loss, kl_loss1
|
||||
|
||||
def test1():
|
||||
"""
|
||||
Test Normal with two `dist_spec_args`.
|
||||
"""
|
||||
net = Net1()
|
||||
mean = Tensor(3.0, dtype=dtype.float32)
|
||||
sd = Tensor(4.0, dtype=dtype.float32)
|
||||
mean_a = Tensor(0.0, dtype=dtype.float32)
|
||||
sd_a = Tensor(1.0, dtype=dtype.float32)
|
||||
value = Tensor([-2.0, -1.0, 0.0, 1.0, 2.0])
|
||||
ans, expected, ans1, expected1 = net(value, mean, sd, mean_a, sd_a)
|
||||
tol = 1e-6
|
||||
assert (np.abs(ans.asnumpy() - expected.asnumpy()) < tol).all()
|
||||
assert (np.abs(ans1.asnumpy() - expected1.asnumpy()) < tol).all()
|
||||
|
||||
class Net2(nn.Cell):
|
||||
"""
|
||||
Test class: Exponential distribution. `dist_spec_args` is `rate`.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(Net2, self).__init__()
|
||||
self.expon = msd.Exponential(dtype=dtype.float32)
|
||||
self.expon1 = msd.Exponential(1.0, dtype=dtype.float32)
|
||||
self.expon2 = msd.Exponential(2.0, dtype=dtype.float32)
|
||||
|
||||
def construct(self, value, rate, rate1):
|
||||
args_list = self.expon.get_dist_args(rate)
|
||||
prob = self.expon1.prob(value, *args_list)
|
||||
args_list1 = self.expon.get_dist_args()
|
||||
prob1 = self.expon2.prob(value, *args_list1)
|
||||
|
||||
args_list2 = self.expon1.get_dist_args()
|
||||
dist_type = self.expon1.get_dist_type()
|
||||
kl_loss = self.expon2.kl_loss(dist_type, *args_list2)
|
||||
|
||||
args_list3 = self.expon.get_dist_args(rate1)
|
||||
dist_type = self.expon.get_dist_type()
|
||||
kl_loss1 = self.expon2.kl_loss(dist_type, *args_list3)
|
||||
return prob, prob1, kl_loss, kl_loss1
|
||||
|
||||
def test2():
|
||||
"""
|
||||
Test Expomential with single `dist_spec_args`.
|
||||
"""
|
||||
net = Net2()
|
||||
rate = Tensor(2.0, dtype=dtype.float32)
|
||||
rate1 = Tensor(1.0, dtype=dtype.float32)
|
||||
value = Tensor([-2.0, -1.0, 0.0, 1.0, 2.0])
|
||||
ans, expected, ans1, expected1 = net(value, rate, rate1)
|
||||
tol = 1e-6
|
||||
assert (np.abs(ans.asnumpy() - expected.asnumpy()) < tol).all()
|
||||
assert (np.abs(ans1.asnumpy() - expected1.asnumpy()) < tol).all()
|
|
@ -98,6 +98,8 @@ def test_kl_cross_entropy():
|
|||
"""
|
||||
Test kl_loss and cross_entropy.
|
||||
"""
|
||||
from mindspore import context
|
||||
context.set_context(device_target="Ascend")
|
||||
net = KL()
|
||||
loc_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
|
||||
scale_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
|
||||
|
|
Loading…
Reference in New Issue