support get_dist_args

This commit is contained in:
Xun Deng 2020-10-14 12:52:29 -04:00
parent 831d3a69d4
commit d4df6f82ea
12 changed files with 245 additions and 1 deletions

View File

@ -153,6 +153,16 @@ class Bernoulli(Distribution):
"""
return self._probs
def _get_dist_type(self):
return "Bernoulli"
def _get_dist_args(self, probs1=None):
if probs1 is not None:
self.checktensor(probs1, 'probs')
else:
probs1 = self.probs
return (probs1,)
def _mean(self, probs1=None):
r"""
.. math::

View File

@ -169,6 +169,16 @@ class Categorical(Distribution):
"""
return self._probs
def _get_dist_type(self):
return "Categorical"
def _get_dist_args(self, probs=None):
if probs is not None:
self.checktensor(probs, 'probs')
else:
probs = self.probs
return (probs,)
def _mean(self, probs=None):
r"""
.. math::

View File

@ -344,6 +344,33 @@ class Distribution(Cell):
else:
self._call_cross_entropy = self._raise_not_implemented_error('cross_entropy')
def _get_dist_args(self, *args, **kwargs):
return raise_not_implemented_util('get_dist_args', self.name, *args, **kwargs)
def get_dist_args(self, *args, **kwargs):
"""
Check the availability and validity of default parameters and `dist_spec_args`.
Args:
*args (list): the list of positional arguments forwarded to subclasses.
**kwargs (dictionary): the dictionary of keyword arguments forwarded to subclasses.
Note:
`dist_spec_args` must be passed in through list or dictionary. The order of `dist_spec_args`
should follow the initialization order of default parameters through `_add_parameter`.
If some `dist_spec_args` is None, the corresponding default parameter is returned.
"""
return self._get_dist_args(*args, **kwargs)
def _get_dist_type(self, *args, **kwargs):
return raise_not_implemented_util('get_dist_type', self.name, *args, **kwargs)
def get_dist_type(self, *args, **kwargs):
"""
Return the type of the distribution.
"""
return self._get_dist_type(*args, **kwargs)
def _raise_not_implemented_error(self, func_name):
name = self.name
def raise_error(*args, **kwargs):
@ -721,4 +748,8 @@ class Distribution(Cell):
return self._call_cross_entropy(*args, **kwargs)
if name == 'sample':
return self._sample(*args, **kwargs)
if name == 'get_dist_args':
return self._get_dist_args(*args, **kwargs)
if name == 'get_dist_type':
return self._get_dist_type(*args, **kwargs)
return raise_not_implemented_util(name, self.name, *args, **kwargs)

View File

@ -157,6 +157,16 @@ class Exponential(Distribution):
"""
return self._rate
def _get_dist_type(self):
return "Exponential"
def _get_dist_args(self, rate=None):
if rate is not None:
self.checktensor(rate, 'rate')
else:
rate = self.rate
return (rate,)
def _mean(self, rate=None):
r"""
.. math::

View File

@ -162,6 +162,16 @@ class Geometric(Distribution):
"""
return self._probs
def _get_dist_type(self):
return "Geometric"
def _get_dist_args(self, probs1=None):
if probs1 is not None:
self.checktensor(probs1, 'probs')
else:
probs1 = self.probs
return (probs1,)
def _mean(self, probs1=None):
r"""
.. math::

View File

@ -109,7 +109,7 @@ class Gumbel(TransformedDistribution):
bijector=msb.Invert(gumbel_cdf),
seed=seed, name=name)
self._parameter_type = gumbel_cdf.parameter_type
self.parameter_type = gumbel_cdf.parameter_type
self._broadcast_shape = gumbel_cdf.event_shape
if self._broadcast_shape != ():
self._is_scalar_batch = False
@ -146,6 +146,20 @@ class Gumbel(TransformedDistribution):
str_info = f'batch_shape = {self._broadcast_shape}'
return str_info
def _get_dist_type(self):
return "Gumbel"
def _get_dist_args(self, loc=None, scale=None):
if loc is not None:
self.checktensor(loc, 'loc')
else:
loc = self.loc
if scale is not None:
self.checktensor(scale, 'scale')
else:
scale = self.scale
return loc, scale
def _mean(self):
r"""
The mean of the distribution.

View File

@ -161,6 +161,20 @@ class LogNormal(msd.TransformedDistribution):
"""Distribution parameter for the pre-transformed standard deviation."""
return self.distribution("sd")
def _get_dist_type(self):
return "LogNormal"
def _get_dist_args(self, loc=None, scale=None):
if loc is not None:
self.checktensor(loc, 'loc')
else:
loc = self.distribution("mean")
if scale is not None:
self.checktensor(scale, 'scale')
else:
scale = self.distribution("sd")
return loc, scale
def extend_repr(self):
if self.is_scalar_batch:
s = f'loc = {self._mean_value}, scale = {self._sd_value}'

View File

@ -175,6 +175,20 @@ class Logistic(Distribution):
"""
return self._scale
def _get_dist_type(self):
return "Logistic"
def _get_dist_args(self, loc=None, scale=None):
if loc is not None:
self.checktensor(loc, 'loc')
else:
loc = self.loc
if scale is not None:
self.checktensor(scale, 'scale')
else:
scale = self.scale
return loc, scale
def _mean(self, loc=None, scale=None):
"""
The mean of the distribution.

View File

@ -154,6 +154,20 @@ class Normal(Distribution):
s = f'batch_shape = {self._broadcast_shape}'
return s
def _get_dist_type(self):
return "Normal"
def _get_dist_args(self, mean=None, sd=None):
if mean is not None:
self.checktensor(mean, 'mean')
else:
mean = self._mean_value
if sd is not None:
self.checktensor(sd, 'sd')
else:
sd = self._sd_value
return mean, sd
def _mean(self, mean=None, sd=None):
"""
The mean of the distribution.

View File

@ -173,6 +173,20 @@ class Uniform(Distribution):
"""
return self._high
def _get_dist_type(self):
return "Uniform"
def _get_dist_args(self, low=None, high=None):
if low is not None:
self.checktensor(low, 'low')
else:
low = self.low
if high is not None:
self.checktensor(high, 'high')
else:
high = self.high
return high, low
def _range(self, low=None, high=None):
r"""
Return the range of the distribution.

View File

@ -0,0 +1,101 @@
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test cases for Normal distribution"""
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import Tensor
from mindspore import dtype
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net1(nn.Cell):
"""
Test class: Normal distribution. `dist_spec_args` are `mean`, `sd`.
"""
def __init__(self):
super(Net1, self).__init__()
self.normal = msd.Normal(dtype=dtype.float32)
self.normal1 = msd.Normal(0.0, 1.0, dtype=dtype.float32)
self.normal2 = msd.Normal(3.0, 4.0, dtype=dtype.float32)
def construct(self, value, mean, sd, mean_a, sd_a):
args_list = self.normal.get_dist_args(mean, sd)
prob = self.normal1.prob(value, *args_list)
args_list1 = self.normal.get_dist_args()
prob1 = self.normal2.prob(value, *args_list1)
args_list2 = self.normal1.get_dist_args()
dist_type = self.normal1.get_dist_type()
kl_loss = self.normal2.kl_loss(dist_type, *args_list2)
args_list3 = self.normal.get_dist_args(mean_a, sd_a)
dist_type = self.normal1.get_dist_type()
kl_loss1 = self.normal2.kl_loss(dist_type, *args_list3)
return prob, prob1, kl_loss, kl_loss1
def test1():
"""
Test Normal with two `dist_spec_args`.
"""
net = Net1()
mean = Tensor(3.0, dtype=dtype.float32)
sd = Tensor(4.0, dtype=dtype.float32)
mean_a = Tensor(0.0, dtype=dtype.float32)
sd_a = Tensor(1.0, dtype=dtype.float32)
value = Tensor([-2.0, -1.0, 0.0, 1.0, 2.0])
ans, expected, ans1, expected1 = net(value, mean, sd, mean_a, sd_a)
tol = 1e-6
assert (np.abs(ans.asnumpy() - expected.asnumpy()) < tol).all()
assert (np.abs(ans1.asnumpy() - expected1.asnumpy()) < tol).all()
class Net2(nn.Cell):
"""
Test class: Exponential distribution. `dist_spec_args` is `rate`.
"""
def __init__(self):
super(Net2, self).__init__()
self.expon = msd.Exponential(dtype=dtype.float32)
self.expon1 = msd.Exponential(1.0, dtype=dtype.float32)
self.expon2 = msd.Exponential(2.0, dtype=dtype.float32)
def construct(self, value, rate, rate1):
args_list = self.expon.get_dist_args(rate)
prob = self.expon1.prob(value, *args_list)
args_list1 = self.expon.get_dist_args()
prob1 = self.expon2.prob(value, *args_list1)
args_list2 = self.expon1.get_dist_args()
dist_type = self.expon1.get_dist_type()
kl_loss = self.expon2.kl_loss(dist_type, *args_list2)
args_list3 = self.expon.get_dist_args(rate1)
dist_type = self.expon.get_dist_type()
kl_loss1 = self.expon2.kl_loss(dist_type, *args_list3)
return prob, prob1, kl_loss, kl_loss1
def test2():
"""
Test Expomential with single `dist_spec_args`.
"""
net = Net2()
rate = Tensor(2.0, dtype=dtype.float32)
rate1 = Tensor(1.0, dtype=dtype.float32)
value = Tensor([-2.0, -1.0, 0.0, 1.0, 2.0])
ans, expected, ans1, expected1 = net(value, rate, rate1)
tol = 1e-6
assert (np.abs(ans.asnumpy() - expected.asnumpy()) < tol).all()
assert (np.abs(ans1.asnumpy() - expected1.asnumpy()) < tol).all()

View File

@ -98,6 +98,8 @@ def test_kl_cross_entropy():
"""
Test kl_loss and cross_entropy.
"""
from mindspore import context
context.set_context(device_target="Ascend")
net = KL()
loc_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
scale_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)