!46637 modify format

Merge pull request !46637 from 俞涵/code_docs_1110
This commit is contained in:
i-robot 2022-12-09 12:59:42 +00:00 committed by Gitee
commit d4b7c7a44c
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
7 changed files with 13 additions and 14 deletions

View File

@ -10,14 +10,13 @@ mindspore.ops.coo_concat
参数: 参数:
- **sp_input** (Union[list(COOTensor), tuple(COOTensor)]) - 输入的需要concat合并的稀疏张量。 - **sp_input** (Union[list(COOTensor), tuple(COOTensor)]) - 输入的需要concat合并的稀疏张量。
- **concat_dim** (标量) - 指定需要合并的轴序号, 它的取值必须是在[-rank, rank)之内, - **concat_dim** (scalar) - 指定需要合并的轴序号, 它的取值必须是在[-rank, rank)之内,
其中rank为sp_input中COOTensor的shape的维度值。缺省值为0。 其中rank为sp_input中COOTensor的shape的维度值。缺省值为0。
返回: 返回:
COOTensor按concat_dim轴合并后的COOTensor。这个COOTensor的稠密shape值为 COOTensor按concat_dim轴合并后的COOTensor。这个COOTensor的稠密shape值为
非concat_dim轴shape与输入一致concat_dim轴shape是所有输入对应轴shape的累加。 非concat_dim轴shape与输入一致concat_dim轴shape是所有输入对应轴shape的累加。
异常: 异常:
- **ValueError** - 如果只有一个COOTensor输入报错。 - **ValueError** - 如果只有一个COOTensor输入报错。
- **ValueError** - 如果输入的COOTensor的shape纬度大于3。COOTensor的构造会报错 - **ValueError** - 如果输入的COOTensor的shape纬度大于3。COOTensor的构造会报错目前COOTensor的shape维度只能为2。
目前COOTensor的shape维度只能为2。

View File

@ -33,7 +33,7 @@ mindspore.ops.max_unpool3d
取值范围需满足: 取值范围需满足:
:math:`[(N, C, D_{out} - stride[0], H_{out} - stride[1], W_{out} - stride[2]), (N, C, D_{out} + stride[0], H_{out} + stride[1], W_{out} + stride[2])]` :math:`[(N, C, D_{out} - stride[0], H_{out} - stride[1], W_{out} - stride[2]), (N, C, D_{out} + stride[0], H_{out} + stride[1], W_{out} + stride[2])]`
输出 返回
shape为 :math:`(N, C, D_{out}, H_{out}, W_{out})`:math:`(C, D_{out}, H_{out}, W_{out})` 的Tensor shape为 :math:`(N, C, D_{out}, H_{out}, W_{out})`:math:`(C, D_{out}, H_{out}, W_{out})` 的Tensor
数据类型与输入 `x` 相同。 数据类型与输入 `x` 相同。

View File

@ -8,8 +8,8 @@ mindspore.ops.split
参数: 参数:
- **x** (Tensor) - Tensor的shape为 :math:`(x_1, x_2, ..., x_R)` - **x** (Tensor) - Tensor的shape为 :math:`(x_1, x_2, ..., x_R)`
- **split_size_or_sections** (Union[int, tuple(int), list(int)]) - 如果 `split_size_or_sections` 是int类型 - **split_size_or_sections** (Union[int, tuple(int), list(int)]) - 如果 `split_size_or_sections` 是int类型
`x` 将被均匀的切分成块,每块的大小为 `split_size_or_sections` ,若 `x.shape[axis]` 不能被 `split_size_or_sections` 整除,最后一块大小将小于 `split_size_or_sections` `x` 将被均匀的切分成块,每块的大小为 `split_size_or_sections` ,若 `x.shape[axis]` 不能被 `split_size_or_sections` 整除,最后一块大小将小于 `split_size_or_sections`
如果 `split_size_or_sections` 是个list类型`x` 将沿 `axis` 轴被切分成 `len(split_size_or_sections)` 块,大小为 `split_size_or_sections` 如果 `split_size_or_sections` 是个list类型`x` 将沿 `axis` 轴被切分成 `len(split_size_or_sections)` 块,大小为 `split_size_or_sections`
- **axis** (int) - 指定分割轴。默认值0。 - **axis** (int) - 指定分割轴。默认值0。
返回: 返回:

View File

@ -20,7 +20,7 @@ mindspore.ops.unique_consecutive
异常: 异常:
- **TypeError** - `x` 不是Tensor。 - **TypeError** - `x` 不是Tensor。
- **TypeError** - `x`的数据类型不支持。 - **TypeError** - `x` 的数据类型不支持。
- **TypeError** - `return_idx` 不是bool。 - **TypeError** - `return_idx` 不是bool。
- **TypeError** - `return_counts` 不是bool。 - **TypeError** - `return_counts` 不是bool。
- **TypeError** - `axis` 不是int。 - **TypeError** - `axis` 不是int。

View File

@ -947,9 +947,9 @@ def get_error_samples_mode():
Returns: Returns:
ErrorSamplesMode, The method in which erroneous samples should be processed in a dataset pipeline. ErrorSamplesMode, The method in which erroneous samples should be processed in a dataset pipeline.
- ErrorSamplesMode.RETURN: means erroneous sample results in error raised and returned. - ErrorSamplesMode.RETURN: means erroneous sample results in error raised and returned.
- ErrorSamplesMode.REPLACE: means erroneous sample is replaced with an internally determined sample. - ErrorSamplesMode.REPLACE: means erroneous sample is replaced with an internally determined sample.
- ErrorSamplesMode.SKIP: means erroneous sample is skipped. - ErrorSamplesMode.SKIP: means erroneous sample is skipped.
Examples: Examples:
>>> error_samples_mode = ds.config.get_error_samples_mode() >>> error_samples_mode = ds.config.get_error_samples_mode()

View File

@ -1010,7 +1010,7 @@ def unique_consecutive(x, return_idx=False, return_counts=False, axis=None):
Args: Args:
x (Tensor): The input tensor. x (Tensor): The input tensor.
return_idx (bool, optional): Whether to return the index of where the element in the original input return_idx (bool, optional): Whether to return the index of where the element in the original input
maps to the position in the output. Default: False. maps to the position in the output. Default: False.
return_counts (bool, optional): Whether to return the counts of each unique element. Default: False. return_counts (bool, optional): Whether to return the counts of each unique element. Default: False.
axis (int, optional): The dimension to apply unique. If None, the unique of the flattened input is axis (int, optional): The dimension to apply unique. If None, the unique of the flattened input is
returned. If specified, it must be int32 or int64. Default: None. returned. If specified, it must be int32 or int64. Default: None.

View File

@ -3687,7 +3687,7 @@ def is_complex(x):
Return True if the data type of the tensor is complex, otherwise return False. Return True if the data type of the tensor is complex, otherwise return False.
Args: Args:
x (Tensor) - The input tensor. x (Tensor): The input tensor.
Returns: Returns:
Bool, return whether the data type of the tensor is complex. Bool, return whether the data type of the tensor is complex.