fix topk param docs

This commit is contained in:
fengyihang 2023-02-20 17:43:11 +08:00
parent 79fbf20385
commit d3d9e2bc74
4 changed files with 12 additions and 8 deletions

View File

@ -6,7 +6,7 @@
沿最后一个维度查找 `k` 个最大元素和对应的索引。
.. warning::
- 如果 `sorted` 设置为False它将使用aicpu运算符性能可能会降低。
- 如果 `sorted` 设置为False它将使用aicpu运算符性能可能会降低,另外,由于在不同平台上存在内存排布以及遍历方式不同等问题,`sorted` 设置为False时计算结果的显示顺序可能会出现不一致的情况
如果 `input_x` 是一维Tensor则查找Tensor中 `k` 个最大元素并将其值和索引输出为Tensor。`values[k]``input_x``k` 个最大元素,其索引是 `indices[k]`
@ -18,7 +18,7 @@
如果两个比较的元素相同,则优先返回索引值较小的元素。
参数:
- **sorted** (bool, 可选) - 如果为True则获取的元素将按值降序排序。如果为False获取的元素将按值升序排序。默认值True。
- **sorted** (bool, 可选) - 如果为True则获取的元素将按值降序排序。如果为False不对获取的元素进行排序。默认值True。
输入:
- **input_x** (Tensor) - 需计算的输入数据类型必须为float16、float32或int32。

View File

@ -6,7 +6,7 @@ mindspore.ops.topk
沿给定维度查找 `k` 个最大或最小元素和对应的索引。
.. warning::
- 如果 `sorted` 设置为False它将使用aicpu运算符性能可能会降低。
- 如果 `sorted` 设置为False它将使用aicpu运算符性能可能会降低,另外,由于在不同平台上存在内存排布以及遍历方式不同等问题,`sorted` 设置为False时计算结果的显示顺序可能会出现不一致的情况
如果 `input_x` 是一维Tensor则查找Tensor中 `k` 个最大或最小元素并将其值和索引输出为Tensor。`values[k]``input_x``k` 个最大元素,其索引是 `indices[k]`
@ -22,7 +22,7 @@ mindspore.ops.topk
- **k** (int) - 指定计算最大或最小元素的数量,必须为常量。
- **dim** (int, 可选) - 需要排序的维度。默认值None。
- **largest** (bool, 可选) - 如果为False则会返回前k个最小值。默认值True。
- **sorted** (bool, 可选) - 如果为True则获取的元素将按值降序排序。如果为False获取的元素将按值升序排序。默认值True。
- **sorted** (bool, 可选) - 如果为True则获取的元素将按值降序排序。如果为False不对获取的元素进行排序。默认值True。
返回:
`values``indices` 组成的tuple。

View File

@ -5692,7 +5692,9 @@ def topk(input_x, k, dim=None, largest=True, sorted=True):
Finds values and indices of the `k` largest or smallest entries along a given dimension.
.. warning::
- If sorted is set to False, it will use the aicpu operator, the performance may be reduced.
- If sorted is set to False, it will use the aicpu operator, the performance may be reduced. In addition, due to
different memory layout and traversal methods on different platforms, the display order of calculation results
may be inconsistent when `sorted` is False.
If the `input_x` is a one-dimensional Tensor, finds the `k` largest or smallest entries in the Tensor,
and outputs its value and index as a Tensor. values[`k`] is the `k` largest item in `input_x`,
@ -5713,7 +5715,7 @@ def topk(input_x, k, dim=None, largest=True, sorted=True):
dim (int, optional): The dimension to sort along. Default: None.
largest (bool, optional): If largest is False then the k smallest elements are returned. Default: True.
sorted (bool, optional): If True, the obtained elements will be sorted by the values in descending order.
If False, the obtained elements will be sorted by the values in ascending order. Default: True.
If False, the obtained elements will not be sorted. Default: True.
Returns:
A tuple consisting of `values` and `indexes`.

View File

@ -7862,7 +7862,9 @@ class TopK(Primitive):
Finds values and indices of the `k` largest entries along the last dimension.
.. warning::
- If sorted is set to False, it will use the aicpu operator, the performance may be reduced.
- If sorted is set to False, it will use the aicpu operator, the performance may be reduced. In addition, due to
different memory layout and traversal methods on different platforms, the display order of calculation results
may be inconsistent when `sorted` is False.
If the `input_x` is a one-dimensional Tensor, finds the `k` largest entries in the Tensor,
and outputs its value and index as a Tensor. values[`k`] is the `k` largest item in `input_x`,
@ -7879,7 +7881,7 @@ class TopK(Primitive):
Args:
sorted (bool, optional): If True, the obtained elements will be sorted by the values in descending order.
If False, the obtained elements will be sorted by the values in ascending order. Default: True.
If False, the obtained elements will not be sorted. Default: True.
Inputs:
- **input_x** (Tensor) - Input to be computed, data type must be float16, float32 or int32.