fix Tensor min api docs

This commit is contained in:
greatpan 2023-02-25 14:58:04 +08:00
parent abd4dd0dc2
commit d3a61af8bf
2 changed files with 65 additions and 2 deletions

View File

@ -3,4 +3,16 @@ mindspore.Tensor.min
.. py:method:: mindspore.Tensor.min(axis=None, keepdims=False, initial=None, where=True)
详情请参考 :func:`mindspore.ops.min`
返回Tensor元素中的最小值或沿 `axis` 轴方向上的最小值。
参数:
- **axis** (Union[None, int, list, tuple of ints], 可选) - 轴在该轴方向上进行操作。默认情况下使用扁平输入。如果该参数为整数元组则在多个轴上选择最小值而不是在单个轴或所有轴上进行选择。默认值None。
- **keepdims** (bool, 可选) - 如果这个参数为True被删去的维度保留在结果中且维度设为1。有了这个选项结果就可以与输入数组进行正确的广播运算。默认值False。
- **initial** (scalar, 可选) - 输出元素的最小值。如果对空切片进行计算则该参数必须设置。默认值None。
- **where** (Tensor[bool], 可选) - 一个bool类型的Tensor被广播以匹配数组维度和选择包含在降维中的元素。如果传递了一个非默认值则必须提供初始值。默认值True。
返回:
Tensor或标量输入Tensor的最小值。如果 `axis` 为None则结果是一个标量值。如果提供了 `axis` 则结果是Tensor ndim - 1维度的一个数组。
异常:
- **TypeError** - 参数的数据类型与上述不一致。

View File

@ -2033,7 +2033,58 @@ class Tensor(Tensor_):
def min(self, axis=None, keepdims=False, initial=None, where=True):
"""
For details, please refer to :func:`mindspore.ops.min`.
Return the minimum of a tensor or minimum along an axis.
Args:
axis (Union[None, int, list, tuple of ints], optional): An axis or
axes along which to operate. By default, flattened input is used. If
`axis` is a tuple of ints, the minimum is selected over multiple axes,
instead of a single axis or all the axes as before. Default: None.
keepdims (bool, optional):
If True, the axes which are reduced are left in the
result as dimensions with size one. With this option, the result will
broadcast correctly against the input array. Default: False.
initial (scalar, optional):
The minimum value of an output element. Must be present to allow
computation on empty slice. Default: None.
where (bool Tensor, optional):
A boolean tensor which is broadcasted to match the dimensions of array,
and selects elements to include in the reduction. If non-default value
is passed, initial must also be provided. Default: True.
Returns:
Tensor or scalar, minimum of input tensor. If `axis` is None, the result is a scalar
value. If `axis` is given, the result is a tensor of dimension ``self.ndim - 1``.
Raises:
TypeError: If arguments have types not specified above.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
See also:
:func:`mindspore.Tensor.argmin`: Return the indices of the minimum values along an axis.
:func:`mindspore.Tensor.argmax`: Return the indices of the maximum values along an axis.
:func:`mindspore.Tensor.max`: Return the minimum of a tensor or minimum along an axis.
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> a = Tensor(np.arange(4).reshape((2, 2)).astype('float32'))
>>> output = a.min()
>>> print(output)
0.0
>>> output = a.min(axis=0)
>>> print(output)
[0. 1.]
>>> output = a.min(axis=0, initial=9, where=Tensor([False]))
>>> print(output)
[9. 9.]
>>> output = a.min(axis=0, initial=9, where=Tensor([False, True]))
>>> print(output)
[9. 1.]
"""
reduce_ = tensor_operator_registry.get("reduce")
reduce_min = tensor_operator_registry.get("reduce_min")