Add mul softmax net tests
This commit is contained in:
parent
1b01960935
commit
d16b2c15b1
|
@ -0,0 +1,234 @@
|
|||
|
||||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore as ms
|
||||
from mindspore import context, Tensor, Parameter
|
||||
from mindspore.common.api import _cell_graph_executor
|
||||
from mindspore.nn import Cell, TrainOneStepCell, Momentum
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self, mul_weight, strategy1=None, strategy2=None, strategy3=None):
|
||||
super().__init__()
|
||||
self.begin_norm_axis = 2
|
||||
self.begin_params_axis = 1
|
||||
self.mul = P.Mul().shard(strategy1)
|
||||
self.softmax = P.Softmax().shard(strategy2)
|
||||
self.mul2 = P.Mul().shard(strategy3)
|
||||
self.mul_weight = Parameter(mul_weight, "w1")
|
||||
self.normalized_shape = [64, 32, 16]
|
||||
|
||||
def construct(self, x, b):
|
||||
out = self.mul(x, self.mul_weight)
|
||||
out = self.softmax(out)
|
||||
out = self.mul2(out, b)
|
||||
return out
|
||||
|
||||
|
||||
_x = Tensor(np.ones([16, 64, 32, 16]), dtype=ms.float32)
|
||||
_w = Tensor(np.ones([16, 64, 32, 16]), dtype=ms.float32)
|
||||
_b = Tensor(np.ones([16, 64, 32, 16]), dtype=ms.float32)
|
||||
|
||||
|
||||
def compile_net(net):
|
||||
optimizer = Momentum(net.trainable_params(),
|
||||
learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_cell_graph_executor.compile(train_net, _x, _b)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
||||
def test_softmax_data_parallel():
|
||||
"""
|
||||
Feature: distribute operator softmax in auto parallel.
|
||||
Description: data parallel softmax net in auto parallel.
|
||||
Expectation: compile done without error.
|
||||
"""
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((16, 1, 1, 1), (16, 1, 1, 1))
|
||||
strategy2 = ((16, 1, 1, 1),)
|
||||
strategy3 = ((16, 1, 1, 1), (16, 1, 1, 1))
|
||||
net = Net(_w, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_softmax_data_parallel_with_half_repeat():
|
||||
"""
|
||||
Feature: distribute operator softmax in auto parallel.
|
||||
Description: data parallel and half repeat softmax net in auto parallel.
|
||||
Expectation: compile done without error.
|
||||
"""
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((16, 1, 1, 1), (16, 1, 1, 1))
|
||||
strategy2 = ((8, 1, 1, 1),)
|
||||
strategy3 = ((16, 1, 1, 1), (16, 1, 1, 1))
|
||||
net = Net(_w, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_softmax_model_parallel():
|
||||
"""
|
||||
Feature: distribute operator softmax in auto parallel.
|
||||
Description: model parallel softmax net in auto parallel.
|
||||
Expectation: compile done without error.
|
||||
"""
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((1, 16, 1, 1), (1, 16, 1, 1))
|
||||
strategy2 = ((16, 1, 1, 1),)
|
||||
strategy3 = ((1, 16, 1, 1), (1, 16, 1, 1))
|
||||
net = Net(_w, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_softmax_model_parallel_with_repeat():
|
||||
"""
|
||||
Feature: distribute operator softmax in auto parallel.
|
||||
Description: model parallel with repeate softmax net in auto parallel.
|
||||
Expectation: compile done without error.
|
||||
"""
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((1, 16, 1, 1), (1, 16, 1, 1))
|
||||
strategy2 = ((1, 1, 1, 1),)
|
||||
strategy3 = ((1, 16, 1, 1), (1, 16, 1, 1))
|
||||
net = Net(_w, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_softmax_model_parallel_with_half_repeat():
|
||||
"""
|
||||
Feature: distribute operator softmax in auto parallel.
|
||||
Description: model parallel with half repeate softmax net in auto parallel.
|
||||
Expectation: compile done without error.
|
||||
"""
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((1, 16, 1, 1), (1, 16, 1, 1))
|
||||
strategy2 = ((8, 1, 1, 1),)
|
||||
strategy3 = ((1, 16, 1, 1), (1, 16, 1, 1))
|
||||
net = Net(_w, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_softmax_hybrid_parallel():
|
||||
"""
|
||||
Feature: distribute operator softmax in auto parallel.
|
||||
Description: hybrid parallel softmax net in auto parallel.
|
||||
Expectation: compile done without error.
|
||||
"""
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((2, 8, 1, 1), (2, 8, 1, 1))
|
||||
strategy2 = ((16, 1, 1, 1),)
|
||||
strategy3 = ((2, 8, 1, 1), (2, 8, 1, 1))
|
||||
net = Net(_w, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_softmax_hybrid_with_repeat_parallel():
|
||||
"""
|
||||
Feature: distribute operator softmax in auto parallel.
|
||||
Description: hybrid parallel with repat softmax net in auto parallel.
|
||||
Expectation: compile done without error.
|
||||
"""
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((2, 8, 1, 1), (2, 8, 1, 1))
|
||||
strategy2 = ((1, 1, 1, 1),)
|
||||
strategy3 = ((2, 8, 1, 1), (2, 8, 1, 1))
|
||||
net = Net(_w, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_softmax_hybrid_with_half_repeat_parallel():
|
||||
"""
|
||||
Feature: distribute operator softmax in auto parallel.
|
||||
Description: hybrid parallel with half repeate softmax net in auto parallel.
|
||||
Expectation: compile done without error.
|
||||
"""
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((2, 8, 1, 1), (2, 8, 1, 1))
|
||||
strategy2 = ((8, 1, 1, 1),)
|
||||
strategy3 = ((2, 8, 1, 1), (2, 8, 1, 1))
|
||||
net = Net(_w, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_softmax_hybrid_parallel_with_quater_repeate():
|
||||
"""
|
||||
Feature: distribute operator softmax in auto parallel.
|
||||
Description: hybrid parallel softmax net in auto parallel.
|
||||
Expectation: compile done without error.
|
||||
"""
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((2, 8, 1, 1), (2, 8, 1, 1))
|
||||
strategy2 = ((4, 1, 1, 1),)
|
||||
strategy3 = ((2, 8, 1, 1), (2, 8, 1, 1))
|
||||
net = Net(_w, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_softmax_auto_parallel():
|
||||
"""
|
||||
Feature: distribute operator softmax in auto parallel.
|
||||
Description: softmax net in auto parallel.
|
||||
Expectation: compile done without error.
|
||||
"""
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="auto_parallel", device_num=16, global_rank=0)
|
||||
net = Net(_w)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_softmax_repeat_calc():
|
||||
"""
|
||||
Feature: distribute operator softmax in auto parallel.
|
||||
Description: repeated calculation softmax net in auto parallel.
|
||||
Expectation: compile done without error.
|
||||
"""
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((2, 2, 4, 1), (2, 2, 4, 1))
|
||||
strategy2 = ((1, 1, 1, 1),)
|
||||
strategy3 = ((2, 2, 4, 1), (2, 2, 4, 1))
|
||||
net = Net(_w, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_softmax_wrong_strategy():
|
||||
"""
|
||||
Feature: distribute operator softmax in auto parallel.
|
||||
Description: wrong strategy net in auto parallel.
|
||||
Expectation: compile done without error.
|
||||
"""
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((2, 2, 4, 1), (2, 2, 4, 1))
|
||||
strategy2 = ((1, 2, 1, 2),)
|
||||
strategy3 = ((2, 2, 4, 1), (2, 2, 4, 1))
|
||||
net = Net(_w, strategy1, strategy2, strategy3)
|
||||
with pytest.raises(RuntimeError):
|
||||
compile_net(net)
|
Loading…
Reference in New Issue