support parallel fusion

This commit is contained in:
tronzhang 2021-01-26 10:25:29 +08:00
parent b2cd022c5f
commit d078cbfa99
19 changed files with 1711 additions and 18 deletions

2
akg

@ -1 +1 @@
Subproject commit 20ecddee01cd07d0945240672597d7a36499e537
Subproject commit c63b2e6f7e7704f18b217e42c8c5c0b95e04b9fb

View File

@ -1,4 +1,4 @@
# Copyright 2020 Huawei Technologies Co., Ltd
# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -15,3 +15,4 @@
"""init"""
from .splitter import split_with_json
from .expander import get_op_expander
from .parallel_estimate import estimate_calulation_amount, estimate_ops

View File

@ -1,4 +1,4 @@
# Copyright 2020 Huawei Technologies Co., Ltd
# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -16,3 +16,4 @@
from .graph_split import split
from .model_builder import GraphBuilder, load_composite
from .graph_parallel import parallel_estimate

View File

@ -0,0 +1,153 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===========================================================================
"""Cost model for parallel fusion"""
from .model import PrimLib
class ParalGain:
def __init__(self, fusion_type, bottleneck, gain, block_assign):
self.fusion_type = fusion_type
self.bottleneck = bottleneck
self.gain = gain
self.block_assign = block_assign
class ScheduleAnalyzer:
"""schedule analyzer"""
WRAP_SIZE = 32
MAX_SM = 80 # Volta
MAX_NUM_THREADS = 1024
MAX_BLOCK = 256
def __init__(self, graph):
self.graph = graph
self.block_num = 0
self.block_weight = 0
_, outputs = graph.deduce_parameters()
self.ops = graph.ops
self.dom_op = [out.op for out in outputs]
def prod(self, shape):
res = shape[0]
for i in range(1, len(shape)):
res = res * shape[i]
return res
def _cal_weight(self, ops):
weight = 0
for op in ops:
weight += self.prod(op.output.shape) * \
PrimLib.dtype_bytes(op.output.dtype)
return weight
def injective_analyze(self):
"""analyze injective case"""
const_size = max([self.prod(op.output.shape) for op in self.dom_op])
const_size = (const_size + self.MAX_NUM_THREADS -
1) // self.MAX_NUM_THREADS * self.MAX_NUM_THREADS
total_weight = self._cal_weight(self.ops)
total_block = (const_size + self.MAX_NUM_THREADS -
1) // self.MAX_NUM_THREADS
need_block_split = const_size > self.MAX_BLOCK * self.MAX_NUM_THREADS
if need_block_split:
self.block_num = self.MAX_BLOCK
waves = (total_block + self.MAX_BLOCK - 1) // self.MAX_BLOCK
self.block_weight = total_weight // total_block * waves
else:
self.block_num = total_block
self.block_weight = total_weight // self.block_num
def reduce_analyze(self):
"""analyze reduce case"""
thread_x, thread_y = 32, 32
reduce_op = None
for op in self.ops:
if PrimLib.iter_type(op) == PrimLib.REDUCE:
if reduce_op:
raise RuntimeError(
"Not support multiply reduce op in a graph now.")
reduce_op = op
if not reduce_op:
raise RuntimeError("Wrong analyze for reduce!")
shape = reduce_op.inputs[0].shape
reduce_axis = reduce_op.attrs['reduce_axis']
total_space = self.prod(shape)
red_space = shape[reduce_axis[0]]
for i in range(1, len(reduce_axis)):
red_space *= shape[reduce_axis[i]]
dtype_size = PrimLib.dtype_bytes(reduce_op.output.dtype)
weight = self._cal_weight(self.ops) # reduce + injective
block_x = (total_space // red_space + thread_y - 1) // thread_y
block_w = (weight + block_x - 1) // block_x
waves = (block_x + self.MAX_BLOCK - 1) // self.MAX_BLOCK
self.block_num = min(self.MAX_BLOCK, block_x)
all_reduce = 10 # 1 reduce init + 3 sync + 5 bin + 1 write
self.block_weight = (block_w + all_reduce *
dtype_size * thread_x * thread_y) * waves
def default_analyze(self):
"""analyze default case"""
def _cal_default_space(op):
space = self.prod(op.output.shape)
for t in op.inputs:
size = self.prod(t.shape)
if size > space:
space = size
return space
space = max([_cal_default_space(op) for op in self.dom_op])
# each sm least 4 wrap
block = (space + (self.WRAP_SIZE * 4) - 1) // (self.WRAP_SIZE * 4)
self.block_num = min(self.MAX_BLOCK, block)
self.block_weight = self._cal_weight(self.ops) // self.block_num
def analyze(self):
"""analyze ops"""
def _ops_type(ops, dom_op):
have_reduce = any(
[PrimLib.iter_type(op) == PrimLib.REDUCE for op in ops])
if have_reduce:
return True
return PrimLib.iter_type(dom_op[0])
dom_type = _ops_type(self.ops, self.dom_op)
if dom_type in (PrimLib.ELEMWISE, PrimLib.BROADCAST):
self.injective_analyze()
elif dom_type == PrimLib.REDUCE:
self.reduce_analyze()
else:
self.default_analyze()
def block_parallel_estimate(graphs):
"""estimate block parallel gain"""
sum_block, max_weight, sum_weight, blocks = 0, 0, 0, []
for g in graphs:
s = ScheduleAnalyzer(g)
s.analyze()
sum_block += s.block_num
if s.block_weight > max_weight:
max_weight = s.block_weight
sum_weight += s.block_weight
blocks.append(s.block_num)
if sum_block > ScheduleAnalyzer.MAX_SM * 32:
return ParalGain("none", sum_weight, 0, [])
return ParalGain("block_fusion", max_weight, sum_weight - max_weight, blocks)
def parallel_estimate(graphs):
return block_parallel_estimate(graphs)

View File

@ -0,0 +1,49 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""estimate parallel case"""
import json
import json.decoder as jd
import traceback
from mindspore import log as logger
from . import model
def estimate_ops(json_str: str):
"""Call costmodel to estimate ops."""
try:
json_obj = json.loads(json_str)
graph_descs = json_obj["graph_desc"]
graphs = []
for gd in graph_descs:
graphs.append(model.load_composite(gd).graph)
estimation = model.parallel_estimate(graphs)
if estimation.fusion_type == "block_fusion" and estimation.gain > 0:
res = (estimation.block_assign, estimation.gain)
else:
res = ([0 for g in graphs], 0)
return res
except jd.JSONDecodeError:
logger.error(traceback.format_exc())
return None
def estimate_calulation_amount(json_str: str):
"""Call costmodel to estimate calculation amount of op."""
try:
graph_desc = json.loads(json_str)
comp = model.load_composite(graph_desc)
estimation = model.parallel_estimate([comp.graph])
return estimation.bottleneck
except jd.JSONDecodeError:
logger.error(traceback.format_exc())
return None

View File

@ -1,5 +1,5 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -120,7 +120,7 @@ class OpInfoExtractor {
}
}
if (op_attr->type().empty()) {
MS_LOG(DEBUG) << "Unknow type, ignore attr " << name;
MS_LOG(DEBUG) << "Unknown type, ignore attr " << name;
continue;
}
op_info->add_attrs_ptr(op_attr);
@ -174,7 +174,7 @@ bool AkgKernelJsonGenerator::CreateInputDescJson(const AnfNodePtr &anf_node, con
// for dynamic input number, dyn_input_sizes has the info of dynamic input num for each input.
auto inputs_ptr = op_info->inputs_ptr();
if (inputs_ptr.empty()) {
MS_LOG(ERROR) << "Kernel [" << anf_node->fullname_with_scope() << "] regist info has no input info";
MS_LOG(ERROR) << "Kernel [" << anf_node->fullname_with_scope() << "] info has no input info";
return false;
}
@ -184,7 +184,7 @@ bool AkgKernelJsonGenerator::CreateInputDescJson(const AnfNodePtr &anf_node, con
for (size_t i = 0; i < inputs_ptr.size(); i++) {
auto input_ptr = inputs_ptr[i];
if (input_ptr == nullptr) {
MS_LOG(ERROR) << "Kernel [" << anf_node->fullname_with_scope() << "] regist input[" << i << "] is nullptr";
MS_LOG(ERROR) << "Kernel [" << anf_node->fullname_with_scope() << "] input[" << i << "] is nullptr";
return false;
}
@ -204,7 +204,8 @@ bool AkgKernelJsonGenerator::CreateInputDescJson(const AnfNodePtr &anf_node, con
input_desc_json[kJsonKeyName] = input_ptr->name();
input_desc_json[kJsonKeyTensorName] = "input_" + std::to_string(GetInputTensorIdxInc(anf_node, real_input_index));
auto input_shape = this->GetInputShape(anf_node, real_input_index);
if (AnfAlgo::IsNodeInGraphKernel(anf_node) && GetInputTensorValue(anf_node, real_input_index, &input_desc_json)) {
if (dump_option_.extract_opinfo_from_anfnode &&
GetInputTensorValue(anf_node, real_input_index, &input_desc_json)) {
MS_LOG(DEBUG) << "Take input[" << real_input_index << "] of [" << anf_node->DebugString(2)
<< "] as const tensor, shape: [" << Vector2Str(input_shape)
<< "], value: " << input_desc_json[kJsonKeyValue];
@ -555,6 +556,30 @@ bool AkgKernelJsonGenerator::CollectJson(const AnfNodePtr &anf_node, nlohmann::j
return true;
}
void AkgKernelJsonGenerator::SetParallelValueToJson(const std::string &processor,
const std::map<size_t, size_t> &dim_infos,
nlohmann::json *sub_fusion_json) {
if (processor == kProcessorCuda) {
std::vector<size_t> cnums;
std::transform(dim_infos.cbegin(), dim_infos.cend(), std::back_insert_iterator(cnums),
[](const std::pair<size_t, size_t> &dim) { return dim.second; });
(*sub_fusion_json)[kJsonKeyCoreNum] = cnums;
} else {
MS_LOG(EXCEPTION) << "Parallel fusion not support " << processor << " now.";
}
}
void AkgKernelJsonGenerator::AddParalleFusionJsonInfo(const std::string &processor, nlohmann::json *kernel_json) {
nlohmann::json parallel_fusion_json;
parallel_fusion_json[kJsonKeyFusionType] = "block_fusion";
std::vector<std::vector<std::string>> sgraphs;
std::transform(sub_graphs_.cbegin(), sub_graphs_.cend(), std::back_insert_iterator(sgraphs),
[](const std::pair<int, std::vector<std::string>> &sg) { return sg.second; });
parallel_fusion_json[kJsonKeySubGraph] = sgraphs;
SetParallelValueToJson(processor, dim_infos_, &parallel_fusion_json);
(*kernel_json)[kJsonKeyParallelFusion] = parallel_fusion_json;
}
bool AkgKernelJsonGenerator::CollectFusedJson(const std::vector<AnfNodePtr> &anf_nodes,
const std::vector<AnfNodePtr> &input_list,
const std::vector<AnfNodePtr> &output_list, nlohmann::json *kernel_json) {
@ -581,6 +606,13 @@ bool AkgKernelJsonGenerator::CollectFusedJson(const std::vector<AnfNodePtr> &anf
(*kernel_json)[kJsonKeyOutputDesc] =
CreateOutputsJson(anf_nodes, input_list, output_list, inputs_json, node_json_map);
auto processor = GetProcessorStr(anf_nodes[0]);
// Add parallel fusion information.
if (!sub_graphs_.empty()) {
AddParalleFusionJsonInfo(processor, kernel_json);
}
size_t hash_id = std::hash<std::string>()(kernel_json->dump());
kernel_name_ = "Fused_";
auto fg = anf_nodes[0]->func_graph();
@ -601,7 +633,7 @@ bool AkgKernelJsonGenerator::CollectFusedJson(const std::vector<AnfNodePtr> &anf
(*kernel_json)[kJsonKeyId] = GetOpCntInc();
(*kernel_json)[kJsonKeyOp] = kernel_name_;
(*kernel_json)[kJsonKeyPlatform] = "AKG";
(*kernel_json)[kJsonKeyProcess] = GetProcessorStr(anf_nodes[0]);
(*kernel_json)[kJsonKeyProcess] = processor;
(*kernel_json)[kJsonKeyComposite] = true;
(*kernel_json)[kJsonKeyCompositeGraph] = fg->ToString() + "." + fg->debug_info()->get_id();
@ -724,6 +756,17 @@ nlohmann::json AkgKernelJsonGenerator::CreateOutputsJson(const std::vector<AnfNo
output_shape.push_back(1);
}
output_desc_json[kJsonKeyShape] = output_shape;
if (auto tcnode = tmp_output.first->cast<CNodePtr>();
tcnode && AnfAlgo::HasNodeAttr(kAttrParallelDimInfo, tcnode)) {
auto info = AnfAlgo::GetNodeAttr<std::vector<size_t>>(tcnode, kAttrParallelDimInfo);
if (info.size() != 2) {
MS_LOG(EXCEPTION) << "Parallel dim info is invalid!";
}
sub_graphs_[info[0]].push_back(output_desc_json[kJsonKeyTensorName]);
if (dim_infos_.find(info[0]) == dim_infos_.end()) {
dim_infos_[info[0]] = info[1];
}
}
}
outputs_json.emplace_back(output_desc_json);
}

View File

@ -1,5 +1,5 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -49,6 +49,11 @@ constexpr auto kJsonKeyPtrAddress = "ptr_address";
constexpr auto kJsonKeyCompositeGraph = "composite_graph";
constexpr auto kJsonKeyPlatform = "platform";
constexpr auto kJsonKeyOpFullName = "op_full_name";
constexpr auto kJsonKeyFusion = "fusion";
constexpr auto kJsonKeyParallelFusion = "parallel_fusion";
constexpr auto kJsonKeyFusionType = "fusion_type";
constexpr auto kJsonKeySubGraph = "sub_graph";
constexpr auto kJsonKeyCoreNum = "core_num";
constexpr auto kAttrInputNames = "input_names";
@ -81,6 +86,8 @@ class AkgKernelJsonGenerator {
input_tensor_idx_.clear();
address_node_map_.clear();
output_tensor_idx_ = 0;
sub_graphs_.clear();
dim_infos_.clear();
}
void set_dump_option(DumpOption dump_option) { dump_option_ = dump_option; }
std::map<std::string, AnfNodePtr> address_node_map() { return address_node_map_; }
@ -115,6 +122,9 @@ class AkgKernelJsonGenerator {
std::string GetOutputFormat(const AnfNodePtr &anf_node, size_t index);
void SaveNodeAddress(const AnfNodePtr &anf_node, nlohmann::json *node_json);
OpInfoPtr ExtractOpInfo(const AnfNodePtr &anf_node);
void SetParallelValueToJson(const std::string &processor, const std::map<size_t, size_t> &dim_infos,
nlohmann::json *sub_fusion_json);
void AddParalleFusionJsonInfo(const std::string &processor, nlohmann::json *kernel_json);
DumpOption dump_option_;
static int op_cnt_;
@ -127,6 +137,8 @@ class AkgKernelJsonGenerator {
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::map<std::string, AnfNodePtr> address_node_map_;
std::map<size_t, std::vector<std::string>> sub_graphs_;
std::map<size_t, size_t> dim_infos_;
};
} // namespace kernel
} // namespace mindspore

View File

@ -133,8 +133,10 @@ bool AtomicCleanInsertter::CanActivateAtomicAdd(const AnfNodePtr &anf_node) {
if (reduce_cnt != 1) {
return false;
}
real_output_num_ = inputs.size() - 1;
} else if (IsPrimitiveCNode(real_return_node, prim::kPrimReduceSum)) {
atomic_add_node_ = real_return_node->cast<CNodePtr>();
real_output_num_ = 1;
} else {
return false;
}
@ -200,7 +202,6 @@ void AtomicCleanInsertter::CreateInplaceAssignNodeAndCorrectReturn(const FuncGra
auto retrun_node = sub_graph->get_return()->input(kFirstDataInputIndex);
if (IsPrimitiveCNode(retrun_node, prim::kPrimMakeTuple)) {
const auto &outs = retrun_node->cast<CNodePtr>()->inputs();
real_output_num_ = outs.size() - 1;
for (size_t i = 1; i < outs.size(); ++i) {
if (i != reduce_real_output_index_ + 1) {
out_node = outs[i];
@ -209,7 +210,6 @@ void AtomicCleanInsertter::CreateInplaceAssignNodeAndCorrectReturn(const FuncGra
}
}
} else {
real_output_num_ = 1;
out_node = atomic_add_node_; // Use result data itself, and set attr "fake_out" true.
fake_out = true;
}
@ -456,7 +456,7 @@ std::vector<std::pair<AnfNodePtr, int> > AtomicCleanInsertter::FindOriginCNodeUs
}
}
for (auto &pair : getitem_user_nodes) {
// dirctory to find real user.
// Directory to find real user.
auto real_users = mng->node_users()[pair.first];
reduce_user_nodes.insert(reduce_user_nodes.end(), real_users.begin(), real_users.end());
}

View File

@ -0,0 +1,155 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/optimizer/graph_kernel/depend_formater.h"
#include <tuple>
#include <utility>
#include <vector>
#include "backend/session/anf_runtime_algorithm.h"
#include "backend/kernel_compiler/common_utils.h"
#include "backend/optimizer/graph_kernel/graph_kernel_helper.h"
namespace mindspore {
namespace opt {
namespace {
bool RemoveRedundantDepend(const AnfNodePtr &node, const FuncGraphManagerPtr &mng) {
const auto &users = mng->node_users()[node];
std::vector<std::pair<AnfNodePtr, int>> sons;
for (const auto &[user, index] : users) {
if (!IsPrimitiveCNode(user, prim::kPrimTupleGetItem)) {
sons.emplace_back(user, index);
continue;
}
auto &[fake_first_grad_son, grad_index] = *((mng->node_users()[user]).begin());
sons.emplace_back(fake_first_grad_son, grad_index);
}
AnfNodePtrList latter_to_delete;
for (const auto &[son, index] : sons) {
if (!IsPrimitiveCNode(son, prim::kPrimDepend) || index != kDependAttachNodeIndex) {
continue;
}
latter_to_delete.push_back(son);
}
if (latter_to_delete.empty()) {
return false;
}
std::vector<AnfNodePtr>::iterator delete_begin = latter_to_delete.begin();
if (latter_to_delete.size() == sons.size()) {
// Left one Depend node relation and delete others!
++delete_begin;
}
for (; delete_begin != latter_to_delete.end(); ++delete_begin) {
auto depend_anfnode = *delete_begin;
auto depend_cnode = depend_anfnode->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(depend_cnode);
auto depend_prior_node = depend_cnode->input(kRealInputIndexInDepend);
mng->Replace(depend_anfnode, depend_prior_node);
}
return true;
}
AnfNodePtr FindPatronNode(const FuncGraphPtr &main_graph, const FuncGraphManagerPtr &mng) {
AnfNodePtr patron_node;
auto return_cnode = main_graph->get_return()->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(return_cnode);
auto output_node = return_cnode->input(kFirstDataInputIndex);
if (IsPrimitiveCNode(output_node, prim::kPrimMakeTuple)) {
auto output_cnode = output_node->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(output_cnode);
patron_node = output_cnode->input(kFirstDataInputIndex);
} else {
patron_node = output_node;
}
return patron_node;
}
void AddDepends(const AnfNodePtr &stable_node, const AnfNodePtrList &free_nodes, const FuncGraphPtr &main_graph,
const FuncGraphManagerPtr &mng) {
AnfNodePtr modified_node = stable_node;
for (const auto &free_node : free_nodes) {
AnfNodePtrList d_inputs = {NewValueNode(prim::kPrimDepend), modified_node, free_node};
auto depend_cnode = main_graph->NewCNode(d_inputs);
depend_cnode->set_abstract(modified_node->abstract());
main_graph->AddNode(depend_cnode);
modified_node = depend_cnode;
}
if (!free_nodes.empty()) {
mng->Replace(stable_node, modified_node);
}
}
} // namespace
bool DependFormater::Run(const FuncGraphPtr &func_graph) {
MS_EXCEPTION_IF_NULL(func_graph);
auto mng = func_graph->manager();
if (mng == nullptr) {
mng = Manage(func_graph, true);
func_graph->set_manager(mng);
}
// 1. Try to remove redundant depend.
bool changed = false;
auto nodes = TopoSort(func_graph->get_return());
std::for_each(nodes.rbegin(), nodes.rend(), [&changed, &mng](const AnfNodePtr &node) {
if (RemoveRedundantDepend(node, mng)) {
changed = true;
}
});
// Should re-toposort for changed graph.
if (changed) {
nodes = TopoSort(func_graph->get_return());
}
// 2. Move depend to tail of graph.
AnfNodePtrList old_depends;
AnfNodePtrList free_nodes;
// Find depend and its free nodes.
for (const auto &node : nodes) {
if (!IsPrimitiveCNode(node, prim::kPrimDepend)) {
continue;
}
old_depends.push_back(node);
free_nodes.push_back(node->cast<CNodePtr>()->input(kDependAttachNodeIndex));
}
if (old_depends.empty()) {
return changed;
}
// Delete old depend.
for (const auto &depend_anfnode : old_depends) {
auto depend_cnode = depend_anfnode->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(depend_cnode);
auto depend_prior_node = depend_cnode->input(kControlDependPriorIndex);
mng->Replace(depend_anfnode, depend_prior_node);
}
// Add new depend node in tail.
AnfNodePtr patron_node = FindPatronNode(func_graph, mng);
AddDepends(patron_node, free_nodes, func_graph, mng);
return true;
}
} // namespace opt
} // namespace mindspore

View File

@ -0,0 +1,37 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_DEPEND_FORMATER_H_
#define MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_DEPEND_FORMATER_H_
#include <map>
#include <memory>
#include "backend/optimizer/common/pass.h"
#include "ir/func_graph.h"
namespace mindspore {
namespace opt {
class DependFormater : public Pass {
public:
DependFormater() : Pass("depend_formater") {}
~DependFormater() override = default;
bool Run(const FuncGraphPtr &graph) override;
};
using DependFormaterPtr = std::shared_ptr<DependFormater>;
} // namespace opt
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_DEPEND_FORMATER_H_

View File

@ -274,7 +274,7 @@ bool ConvertNonscalarTensorToParameter(const FuncGraphPtr &fg, AnfNodePtrList *i
MS_EXCEPTION_IF_NULL(inputs_ptr);
auto nodes = TopoSort(fg->get_return());
std::map<ValuePtr, AnfNodePtrList> vmap;
OrderedMap<ValuePtr, AnfNodePtrList> vmap;
for (const auto &node : nodes) {
if (!node->isa<CNode>()) {
continue;
@ -590,7 +590,7 @@ bool AnfToJsonDesc(const AnfNodePtrList &nodes, const DumpOption &dump_option, n
op_nodes = nodes;
} else {
// When there are basic and composite ops, the composite ops should be inline to the basic ones' graph,
// so a new graph generation should be done (beacuse they may in the main graph!).
// so a new graph generation should be done (because they may in the main graph!).
// If address_node_map is wanted, we should map the new node in new graph to the old nodes. But... not support now.
MS_LOG(EXCEPTION) << "No support mixed with basic and composite ops now!";
}
@ -1016,5 +1016,16 @@ CNodePtr CreateCNode(const std::vector<AnfNodePtr> &inputs, const FuncGraphPtr &
func_graph->AddNode(cnode);
return cnode;
}
void MakeCNodeSafeForAttr(const AnfNodePtr &node) {
auto cnode = node->cast<CNodePtr>();
if (cnode == nullptr) {
return;
}
AnfNodePtrList new_inputs = {NewValueNode(AnfAlgo::GetCNodePrimitive(cnode)->Clone())};
auto inputs = cnode->inputs();
new_inputs.insert(new_inputs.end(), inputs.begin() + 1, inputs.end());
cnode->set_inputs(new_inputs);
}
} // namespace opt
} // namespace mindspore

View File

@ -1,5 +1,5 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -42,6 +42,8 @@ using kernel::DumpOption;
constexpr auto kIsFeatureMapOutput = "IsFeatureMapOutput";
constexpr auto kIsFeatureMapInputList = "IsFeatureMapInputList";
constexpr auto kGraphKernelModule = "mindspore._extends.graph_kernel";
constexpr auto kGraphKernelEstimateOps = "estimate_ops";
constexpr auto kGraphKernelGetNodeCalAmount = "estimate_calulation_amount";
constexpr auto kGraphKernelSplitFunc = "split_with_json";
constexpr auto kGetGraphKernelOpExpander = "get_op_expander";
constexpr auto kJsonKeyMultiGraph = "multi_graph";
@ -88,6 +90,7 @@ ShapeVector GetShape(const AnfNodePtr &node);
std::vector<int64_t> GetReduceAxis(const AnfNodePtr &node);
CNodePtr CreateCNode(const std::vector<AnfNodePtr> &inputs, const FuncGraphPtr &func_graph, const DataInfo &out_info);
void MakeCNodeSafeForAttr(const AnfNodePtr &node);
template <typename T>
ValueNodePtr CreateScalarTensorValueNode(const DataInfo &info, T value, size_t data_length) {

View File

@ -0,0 +1,89 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/optimizer/graph_kernel/parallel_cost_model.h"
#include <algorithm>
#include "backend/kernel_compiler/akg/akg_kernel_json_generator.h"
#include "backend/optimizer/graph_kernel/graph_kernel_helper.h"
#include "pipeline/jit/parse/python_adapter.h"
namespace mindspore {
namespace opt {
std::string CommonDimInfo::ToString() {
std::ostringstream buffer;
buffer << "Dim(" << dim_info_ << ")";
return buffer.str();
}
int ParallelCostModel::GetNodeCalAmount(const AnfNodePtr &node) {
nlohmann::json json_desc;
AnfNodePtrList nodes = {node};
DumpOption dump_option;
if (!AnfToJsonDesc(nodes, dump_option, &json_desc)) {
MS_LOG(EXCEPTION) << "Collect json desc failed.";
}
auto json_desc_str = json_desc.dump();
auto ret = parse::python_adapter::CallPyFn(kGraphKernelModule, kGraphKernelGetNodeCalAmount, json_desc_str);
if (py::isinstance<py::none>(ret)) {
MS_LOG(EXCEPTION) << "CallPyFn: [" << kGraphKernelSplitFunc << "] return invalid result. input json:\n"
<< json_desc_str;
}
return py::cast<int>(ret);
}
std::tuple<std::vector<DimInfoPtr>, int> ParallelCostModel::CalFuseInfo(const AnfNodePtrList &nodes) {
nlohmann::json json_desc;
std::vector<AnfNodePtrList> graphs;
std::transform(nodes.begin(), nodes.end(), std::back_inserter(graphs),
[](const AnfNodePtr &node) -> AnfNodePtrList { return {node}; });
DumpOption dump_option;
if (!AnfToJsonDesc(graphs, dump_option, &json_desc)) {
MS_LOG(EXCEPTION) << "Collect json desc failed.";
}
auto json_desc_str = json_desc.dump();
auto ret = parse::python_adapter::CallPyFn(kGraphKernelModule, kGraphKernelEstimateOps, json_desc_str);
if (py::isinstance<py::none>(ret)) {
MS_LOG(EXCEPTION) << "CallPyFn: [" << kGraphKernelSplitFunc << "] return invalid result. input json:\n"
<< json_desc_str;
}
py::tuple ret_tuple = py::cast<py::tuple>(ret);
if (!py::isinstance<py::tuple>(ret_tuple) || ret_tuple.size() != 2) {
MS_LOG(EXCEPTION) << "Parallel cost model should return a tuple with two elements!";
}
std::vector<DimInfoPtr> dim_infos;
py::list dim_list = py::cast<py::list>(ret_tuple[0]);
for (size_t i = 0; i < dim_list.size(); ++i) {
dim_infos.push_back(std::make_shared<CommonDimInfo>(py::cast<int>(dim_list[i])));
}
int benefit = py::cast<int>(ret_tuple[1]);
return std::make_tuple(dim_infos, benefit);
}
ParallelCostModelPtr ParellelCostModelWarehouse::GetParallelCostModel(const std::string &target) {
if (target != kGPUDevice) {
MS_LOG(EXCEPTION) << "Parallel cost model only support " << kGPUDevice << " now.";
}
return cost_model_;
}
} // namespace opt
} // namespace mindspore

View File

@ -0,0 +1,82 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_PARALLEL_COST_MODEL_H_
#define MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_PARALLEL_COST_MODEL_H_
#include <map>
#include <memory>
#include <set>
#include <sstream>
#include <string>
#include <tuple>
#include <vector>
#include "base/base.h"
#include "backend/session/anf_runtime_algorithm.h"
#include "backend/optimizer/common/optimizer.h"
#include "backend/optimizer/graph_kernel/parallel_cost_model.h"
#include "backend/session/kernel_graph.h"
#include "utils/ms_context.h"
namespace mindspore {
namespace opt {
class DimInfo {
public:
DimInfo() = default;
~DimInfo() {}
virtual std::string ToString() = 0;
};
class CommonDimInfo : public DimInfo {
public:
explicit CommonDimInfo(size_t dim) : dim_info_(dim) {}
~CommonDimInfo() {}
void set_dim_info(size_t d) { dim_info_ = d; }
size_t dim_info() const { return dim_info_; }
std::string ToString() override;
private:
size_t dim_info_;
};
using DimInfoPtr = std::shared_ptr<DimInfo>;
using CommonDimInfoPtr = std::shared_ptr<CommonDimInfo>;
class ParallelCostModel {
public:
ParallelCostModel() {}
~ParallelCostModel() {}
int GetNodeCalAmount(const AnfNodePtr &node);
std::tuple<std::vector<DimInfoPtr>, int> CalFuseInfo(const AnfNodePtrList &nodes);
};
using ParallelCostModelPtr = std::shared_ptr<ParallelCostModel>;
class ParellelCostModelWarehouse {
public:
static ParellelCostModelWarehouse &Instance() {
static ParellelCostModelWarehouse instance;
return instance;
}
ParallelCostModelPtr GetParallelCostModel(const std::string &target);
private:
ParellelCostModelWarehouse() { cost_model_ = std::make_shared<ParallelCostModel>(); }
ParallelCostModelPtr cost_model_;
};
} // namespace opt
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_PARALLEL_COST_MODEL_H_

View File

@ -0,0 +1,876 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/optimizer/graph_kernel/parallel_fusion.h"
#include <algorithm>
#include <list>
#include <map>
#include <memory>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <unordered_map>
#include <utility>
#include <vector>
#include <cstdlib>
#include "backend/optimizer/graph_kernel/graph_kernel_helper.h"
#include "frontend/operator/ops.h"
#include "ir/func_graph_cloner.h"
#include "vm/segment_runner.h"
namespace mindspore {
namespace opt {
namespace {
bool IsOneOf(const AnfNodePtr &node, const std::vector<PrimitivePtr> &ops_prim) {
return std::any_of(ops_prim.cbegin(), ops_prim.cend(),
[&node](const PrimitivePtr &prim) { return IsPrimitiveCNode(node, prim); });
}
void ProcessThroughPassCNode(std::function<bool(const AnfNodePtr &)> pass_fn,
OrderedMap<AnfNodePtr, NodeRelation> *node_rels) {
std::set<AnfNodePtr> latter_to_be_erased;
for (const auto &[node, node_rel] : (*node_rels)) {
if (!pass_fn(node) || latter_to_be_erased.count(node) != 0) {
continue;
}
auto nexts = node_rel.nexts;
std::vector<AnfNodePtr> pre_nodes;
std::queue<AnfNodePtr> node_que;
node_que.push(node);
// Find until all pre nodes get false from pass_fn, and collect all these predecessor nodes.
while (!node_que.empty()) {
auto cur_node = node_que.front();
node_que.pop();
if (!pass_fn(cur_node)) {
pre_nodes.push_back(cur_node);
continue;
}
latter_to_be_erased.insert(cur_node);
auto predecessors = (*node_rels)[cur_node].pres;
if (predecessors.empty()) {
continue;
}
for (const auto &pre_node : predecessors) {
(*node_rels)[cur_node].pres.erase(pre_node);
(*node_rels)[pre_node].nexts.erase(cur_node);
node_que.push(pre_node);
}
}
// Modify the relation: delete node <-> next_node, add pre node <-> next_node.
for (const auto &next_node : nexts) {
(*node_rels)[next_node].pres.erase(node);
for (const auto &cur_node : pre_nodes) {
(*node_rels)[next_node].pres.insert(cur_node);
(*node_rels)[cur_node].nexts.insert(next_node);
}
}
}
for (const auto &node : latter_to_be_erased) {
node_rels->erase(node);
}
}
void ProcessDependCNode(OrderedMap<AnfNodePtr, NodeRelation> *node_rels) {
for (auto &[node, node_rel] : (*node_rels)) {
if (!IsPrimitiveCNode(node, prim::kPrimDepend)) {
continue;
}
// Make attached nodes deattach with node.
auto cnode = node->cast<CNodePtr>();
for (size_t id = kDependAttachNodeIndex; id < cnode->inputs().size(); ++id) {
auto attach_node = cnode->input(id);
if (auto iter = node_rels->find(attach_node); iter != node_rels->end()) {
iter->second.nexts.erase(node);
}
if (auto &cnode_pres = node_rel.pres; cnode_pres.count(attach_node) != 0) {
cnode_pres.erase(attach_node);
}
}
}
// Eliminate depend node of node relations.
ProcessThroughPassCNode([](const AnfNodePtr &node) { return IsOneOf(node, {prim::kPrimDepend}); }, node_rels);
}
std::tuple<std::pair<AnfNodePtr, AnfNodePtr>, std::pair<AnfNodePtrList, AnfNodePtrList>> FindRelationOfControlDepend(
const AnfNodePtr &node, OrderedMap<AnfNodePtr, NodeRelation> *node_rels) {
auto cnode = node->cast<CNodePtr>();
auto prior_node = cnode->input(kControlDependPriorIndex);
auto behind_node = cnode->input(kControlDependBehindIndex);
MS_EXCEPTION_IF_NULL(prior_node);
MS_EXCEPTION_IF_NULL(behind_node);
OrderedSet<AnfNodePtr> prior_nodes;
prior_nodes.insert(prior_node);
OrderedSet<AnfNodePtr> behind_nodes;
behind_nodes.insert(behind_node);
int64_t depend_mode = 0;
if (AnfAlgo::HasNodeAttr(kControlDependMode, cnode)) {
depend_mode = AnfAlgo::GetNodeAttr<int64_t>(cnode, kControlDependMode);
}
if (prior_node->isa<Parameter>() && depend_mode == 1) {
prior_nodes = (*node_rels)[prior_node].nexts;
}
if (behind_node->isa<Parameter>()) {
behind_nodes = depend_mode == 1 ? (*node_rels)[behind_node].nexts : OrderedSet<AnfNodePtr>();
}
// Get real nodes.
AnfNodePtrList real_prior_nodes;
std::set<AnfNodePtr> prior_visited;
for (const auto &tmp : prior_nodes) {
AnfAlgo::GetAllFatherRealNode(tmp, &real_prior_nodes, &prior_visited);
}
AnfNodePtrList real_behind_nodes;
std::set<AnfNodePtr> behind_visited;
for (const auto &tmp : behind_nodes) {
AnfAlgo::GetAllFatherRealNode(tmp, &real_behind_nodes, &behind_visited);
}
return std::make_tuple(std::make_pair(prior_node, behind_node), std::make_pair(real_prior_nodes, real_behind_nodes));
}
void ReLinkNodesOfControlDependByRelation(const std::unordered_map<AnfNodePtr, AnfNodePtrList> &control_depend_info,
OrderedMap<AnfNodePtr, NodeRelation> *node_rels) {
// Relink and its log.
for (const auto &m : control_depend_info) {
const auto &prior = m.second[0];
const auto &behind = m.second[1];
(*node_rels)[prior].nexts.insert(behind);
(*node_rels)[behind].pres.insert(prior);
MS_LOG(DEBUG) << "Relink relation of " << m.first->fullname_with_scope() << ": " << prior->fullname_with_scope()
<< " -> " << behind->fullname_with_scope();
}
}
void ProcessControlDependCNode(OrderedMap<AnfNodePtr, NodeRelation> *node_rels) {
std::unordered_map<AnfNodePtr, AnfNodePtrList> control_depend_info;
AnfNodePtrList latter_to_be_erased;
// Collect ControlDepend node and its input and output nodes.
for (auto &[node, node_rel] : (*node_rels)) {
if (!IsPrimitiveCNode(node, prim::kPrimControlDepend)) {
continue;
}
auto [direct_relation, real_relations] = FindRelationOfControlDepend(node, node_rels);
auto &[prior_node, behind_node] = direct_relation;
auto &[real_prior_nodes, real_behind_nodes] = real_relations;
(*node_rels)[prior_node].nexts.erase(node);
(*node_rels)[behind_node].nexts.erase(node);
node_rel.pres.erase(prior_node);
node_rel.pres.erase(behind_node);
for (auto &first_node : real_prior_nodes) {
for (auto &second_node : real_behind_nodes) {
MS_EXCEPTION_IF_NULL(first_node);
MS_EXCEPTION_IF_NULL(second_node);
control_depend_info.insert({node, {first_node, second_node}});
}
}
latter_to_be_erased.push_back(node);
}
// Delete ControlDepend node before relink its relation.
for (const auto &node : latter_to_be_erased) {
node_rels->erase(node);
}
// Rebuild relation between prior and behind node.
ReLinkNodesOfControlDependByRelation(control_depend_info, node_rels);
}
void ProcessTailMakeTupleCNode(OrderedMap<AnfNodePtr, NodeRelation> *node_rels) {
AnfNodePtrList latter_to_be_erased;
for (auto &[node, node_rel] : (*node_rels)) {
if (!IsPrimitiveCNode(node, prim::kPrimMakeTuple)) {
continue;
}
AnfNodePtrList check_next_list;
check_next_list.push_back(node);
bool disinterested = false;
for (auto &successor : node_rel.nexts) {
if (!IsPrimitiveCNode(successor, prim::kPrimTupleGetItem)) {
disinterested = true;
break;
}
check_next_list.push_back(successor);
}
if (disinterested) {
continue;
}
if (!std::all_of(check_next_list.cbegin(), check_next_list.cend(),
[&node_rels](const AnfNodePtr &n) -> bool { return (*node_rels)[n].nexts.empty(); })) {
continue;
}
latter_to_be_erased.push_back(node);
}
// Delete Tail MakeTuple(including its getitem nodes).
for (const auto &node : latter_to_be_erased) {
for (auto &pre : (*node_rels)[node].pres) {
(*node_rels)[pre].nexts.erase(node);
}
// Tail MakeTuple is just be consumed by nothing or invalid getitem node.
for (auto &getitem : (*node_rels)[node].nexts) {
node_rels->erase(getitem);
}
node_rels->erase(node);
}
}
bool IsSingleInputNode(const OrderedMap<AnfNodePtr, NodeRelation> &node_rels, const AnfNodePtr &node) {
if (auto iter = node_rels.find(node); iter != node_rels.end() && iter->second.pres.size() == 1) {
return true;
}
return false;
}
bool IsSingleOutputNode(const OrderedMap<AnfNodePtr, NodeRelation> &node_rels, const AnfNodePtr &node) {
if (auto iter = node_rels.find(node); iter != node_rels.end() && iter->second.nexts.size() == 1) {
return true;
}
return false;
}
bool IsMultiInputsNode(const OrderedMap<AnfNodePtr, NodeRelation> &node_rels, const AnfNodePtr &node) {
if (auto iter = node_rels.find(node); iter != node_rels.end() && iter->second.pres.size() > 1) {
return true;
}
return false;
}
bool IsMultiOutputsNode(const OrderedMap<AnfNodePtr, NodeRelation> &node_rels, const AnfNodePtr &node) {
if (auto iter = node_rels.find(node); iter != node_rels.end() && iter->second.nexts.size() > 1) {
return true;
}
return false;
}
bool IsNoInputsNode(const OrderedMap<AnfNodePtr, NodeRelation> &node_rels, const AnfNodePtr &node) {
if (auto iter = node_rels.find(node); iter != node_rels.end() && iter->second.pres.size() == 0) {
return true;
}
return false;
}
bool IsNoOutputsNode(const OrderedMap<AnfNodePtr, NodeRelation> &node_rels, const AnfNodePtr &node) {
if (auto iter = node_rels.find(node); iter != node_rels.end() && iter->second.nexts.size() == 0) {
return true;
}
return false;
}
void ProcessLocalStructure(OrderedMap<AnfNodePtr, NodeRelation> *node_rels, std::set<AnfNodePtr> *virtual_noout_nodes,
std::set<AnfNodePtr> *ignore_noin_nodes) {
// 1. Local relation
// Graph as following left part, relation D->B and D->E(D is a no input node)
// will make B and E to be multiply inputs node.
// But for parallel, this local relation can ignore for B and E, which make
// them be able to be paralleled.
//
// ************************************
// * *
// * | | *
// * A D A D *
// * | /| | / \ *
// * | C | | C F *
// * |/ / | | | *
// * B F ====> B x x *
// * | / | *
// * |/ | *
// * E E *
// * | | *
// * *
// ************************************
AnfNodePtrList no_input_nodes;
for (const auto &node_rel : *node_rels) {
auto &node = node_rel.first;
if (IsNoInputsNode(*node_rels, node)) {
no_input_nodes.push_back(node);
}
}
std::vector<std::pair<AnfNodePtr, AnfNodePtr>> latter_delete;
for (const auto &ninode : no_input_nodes) {
AnfNodePtrList cnexts((*node_rels)[ninode].nexts.begin(), (*node_rels)[ninode].nexts.end());
for (const auto &n : cnexts) {
AnfNodePtr serial_tail = ninode;
AnfNodePtr cur_node = n;
while (IsSingleInputNode(*node_rels, cur_node) && IsSingleOutputNode(*node_rels, cur_node)) {
serial_tail = cur_node;
cur_node = *((*node_rels)[cur_node].nexts.begin());
}
latter_delete.emplace_back(serial_tail, cur_node);
}
}
// Delete relation.
for (const auto &[serial_tail, cur_node] : latter_delete) {
virtual_noout_nodes->insert(serial_tail);
ignore_noin_nodes->insert(cur_node);
(*node_rels)[serial_tail].nexts.erase(cur_node);
(*node_rels)[cur_node].pres.erase(serial_tail);
MS_LOG(INFO) << "Process local relation delete relation: " << serial_tail->fullname_with_scope() << " -> "
<< cur_node->fullname_with_scope();
}
}
std::tuple<AnfNodePtrList, AnfNodePtrList, AnfNodePtrList, AnfNodePtrList> GetInterestNodeIds(
const OrderedMap<AnfNodePtr, NodeRelation> &node_rels, const std::set<AnfNodePtr> &virtual_noout_nodes,
const std::set<AnfNodePtr> &ignore_noin_nodes) {
AnfNodePtrList multi_inputs_nodes, multi_outputs_nodes, no_input_nodes, no_output_nodes;
std::list<std::function<void(const AnfNodePtr &)>> func_list = {
[&node_rels, &multi_inputs_nodes](const AnfNodePtr &node) {
if (IsMultiInputsNode(node_rels, node)) {
multi_inputs_nodes.push_back(node);
}
},
[&node_rels, &multi_outputs_nodes](const AnfNodePtr &node) {
if (IsMultiOutputsNode(node_rels, node)) {
multi_outputs_nodes.push_back(node);
}
},
[&node_rels, &no_input_nodes, &ignore_noin_nodes](const AnfNodePtr &node) {
if (IsNoInputsNode(node_rels, node) && ignore_noin_nodes.count(node) == 0) {
no_input_nodes.push_back(node);
}
},
[&node_rels, &no_output_nodes, &virtual_noout_nodes](const AnfNodePtr &node) {
if (IsNoOutputsNode(node_rels, node) && virtual_noout_nodes.count(node) == 0) {
no_output_nodes.push_back(node);
}
}};
for (const auto &node_rel : node_rels) {
for (const auto &func : func_list) {
func(node_rel.first);
}
}
return std::make_tuple(multi_inputs_nodes, multi_outputs_nodes, no_input_nodes, no_output_nodes);
}
bool WhiteOpsFilter(const AnfNodePtr &node) {
std::vector<PrimitivePtr> whiteable_ops = {}; // Not special for now.
return session::AnfRuntimeAlgorithm::IsGraphKernel(node) || IsOneOf(node, whiteable_ops);
}
std::vector<AnfNodePtrList> SearchFromNodes(const AnfNodePtrList &nodes,
const std::function<bool(const AnfNodePtr &)> &filter_func,
const OrderedMap<AnfNodePtr, NodeRelation> &node_rels, bool is_backward,
std::set<AnfNodePtr> *seen) {
// Start from multi-inputs node, stop on seen node or multi-inputs or multi-outputs nodes.
// For backward search, the other multi-inputs node can be contained in.
// For forward search, the other multi-outputs node can be contained in.
auto get_contain_node_set = is_backward ? [](const NodeRelation &info) { return info.pres; }
: [](const NodeRelation &info) { return info.nexts; };
auto get_exclude_node_set = is_backward ? [](const NodeRelation &info) { return info.nexts; }
: [](const NodeRelation &info) { return info.pres; };
std::vector<AnfNodePtrList> group;
for (const auto &node : nodes) {
AnfNodePtrList stream;
AnfNodePtr n = node;
for (auto iter = node_rels.find(n);
seen->count(n) == 0 && iter != node_rels.end() && get_exclude_node_set(iter->second).size() <= 1;
iter = node_rels.find(n)) {
if (filter_func(n)) {
stream.push_back(n);
seen->insert(n);
}
if (get_contain_node_set(iter->second).size() != 1) {
break;
}
n = *(get_contain_node_set(iter->second).begin());
}
if (stream.size() > 0) {
group.push_back(stream);
}
}
if (group.size() == 1) {
for (const auto &drop : group[0]) {
seen->erase(drop);
}
group.clear();
}
return group;
}
void SearchStreamFromMultiRelationNode(const AnfNodePtrList &multi_nodes,
const OrderedMap<AnfNodePtr, NodeRelation> &node_rels, bool is_backward,
std::vector<std::vector<AnfNodePtrList>> *groups, std::set<AnfNodePtr> *seen) {
auto get_related_nodes = is_backward ? [](const NodeRelation &info) { return info.pres; }
: [](const NodeRelation &info) { return info.nexts; };
for (const auto &node : multi_nodes) {
if (auto iter = node_rels.find(node); iter != node_rels.end()) {
const auto &pre_nodes = get_related_nodes(iter->second);
AnfNodePtrList related_nodes(pre_nodes.begin(), pre_nodes.end());
groups->push_back(SearchFromNodes(related_nodes, WhiteOpsFilter, node_rels, is_backward, seen));
}
}
// Erase empty groups.
for (auto iter = groups->begin(); iter != groups->end();) {
if (iter->size() == 0) {
iter = groups->erase(iter);
} else {
++iter;
}
}
}
void SearchStreamFromUnidirectionalNode(const AnfNodePtrList &ud_nodes,
const OrderedMap<AnfNodePtr, NodeRelation> &node_rels, bool is_backward,
std::vector<std::vector<AnfNodePtrList>> *groups, std::set<AnfNodePtr> *seen) {
groups->push_back(SearchFromNodes(ud_nodes, WhiteOpsFilter, node_rels, is_backward, seen));
// Erase empty groups.
for (auto iter = groups->begin(); iter != groups->end();) {
if (iter->size() == 0) {
iter = groups->erase(iter);
} else {
++iter;
}
}
}
std::string DumpNode(const AnfNodePtr &node) {
auto cnode = node->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(cnode);
std::stringstream buf;
buf << (AnfAlgo::IsGraphKernel(cnode) ? "[graph]" : "[primitive]") << cnode->fullname_with_scope() << "|"
<< cnode->ToString();
return buf.str();
}
void DumpParallelGroups(const std::vector<std::vector<AnfNodePtrList>> &groups) {
MS_LOG(INFO) << "There are " << groups.size() << " parallel groups, their detail is: ";
int i = 0;
for (const auto group : groups) {
std::stringstream buf;
buf << "[" << i << " group] " << group.size() << ":\n";
for (const auto nodes : group) {
buf << " " << nodes.size() << ": [<";
for (const auto node : nodes) {
buf << "(" << DumpNode(node) << ") -> ";
}
buf << ">]\n";
}
i++;
MS_LOG(INFO) << buf.str();
}
}
void DumpParallelFusionDetail(const AnfNodePtrList &source, const AnfNodePtr &target) {
std::stringstream buf;
buf << "Parallel fusion detail: ";
for (const auto &node : source) {
buf << "(" << DumpNode(node) << ") + ";
}
buf << "==>"
<< "(" << DumpNode(target) << ")";
MS_LOG(INFO) << buf.str();
}
} // namespace
OrderedMap<AnfNodePtr, NodeRelation> ParallelOpFusion::GenAnalysisGraph(const AnfNodePtrList &nodes) {
// Based on anf node input information, build a simple graph for latter analyzation.
OrderedMap<AnfNodePtr, NodeRelation> node_rels;
auto get_info = [&node_rels](const AnfNodePtr &node) {
if (node_rels.count(node) == 0) {
node_rels.insert({node, NodeRelation()});
}
return &(node_rels[node]);
};
for (const auto &node : nodes) {
if (!node->isa<CNode>()) {
continue;
}
auto prior_node = get_info(node);
for (const auto &input : (node->cast<CNodePtr>())->inputs()) {
// Parameter for ControlDepend when depend mode is 1.
if (!input->isa<CNode>() && !input->isa<Parameter>()) {
continue;
}
auto behind_node = get_info(input);
prior_node->pres.insert(input);
behind_node->nexts.insert(node);
}
}
ProcessDependCNode(&node_rels);
ProcessControlDependCNode(&node_rels);
ProcessThroughPassCNode(
[](const AnfNodePtr &node) {
return IsOneOf(node, {prim::kPrimReshape, prim::kPrimExpandDims, prim::kPrimSqueeze, prim::kPrimTupleGetItem});
},
&node_rels);
ProcessThroughPassCNode([](const AnfNodePtr &node) { return node->isa<Parameter>(); }, &node_rels);
ProcessTailMakeTupleCNode(&node_rels);
ProcessLocalStructure(&node_rels, &virtual_noout_nodes_, &ignore_noin_nodes_);
return node_rels;
}
std::vector<std::vector<AnfNodePtrList>> ParallelOpFusion::SearchParallelGroups(
const OrderedMap<AnfNodePtr, NodeRelation> &node_rels) {
// Get interesting nodes: multi-inputs nodes, multi-outputs nodes, no input nodes and no output nodes.
auto [mul_ins_nodes, mul_outs_nodes, no_in_nodes, no_out_nodes] =
GetInterestNodeIds(node_rels, virtual_noout_nodes_, ignore_noin_nodes_);
// Get streams and group them
std::set<AnfNodePtr> seen;
std::vector<std::vector<AnfNodePtrList>> groups;
SearchStreamFromMultiRelationNode(mul_ins_nodes, node_rels, true, &groups, &seen);
SearchStreamFromUnidirectionalNode(no_out_nodes, node_rels, true, &groups, &seen);
SearchStreamFromMultiRelationNode(mul_outs_nodes, node_rels, false, &groups, &seen);
SearchStreamFromUnidirectionalNode(no_in_nodes, node_rels, false, &groups, &seen);
DumpParallelGroups(groups);
return groups;
}
std::tuple<AnfNodePtrList, std::vector<int>> ParallelOpFusion::GetAvaliableNodesByOffset(
int start, const std::vector<int> &offsets, const std::vector<bool> &used, const AnfNodePtrList &nodes,
const std::set<int> &excludes) {
// Get unused nodes by offset index, the result will contain the node with start index.
int node_limit = nodes.size();
if (start >= node_limit) {
MS_LOG(EXCEPTION) << "Index offset is exceed the limit of given nodes.";
}
AnfNodePtrList target_nodes = {nodes[start]};
std::vector<int> valid_indices;
std::vector<int> unused;
for (size_t i = start; i < used.size(); ++i) {
if (!used[i] && excludes.count(i) == 0) {
unused.push_back(i);
}
}
int limit = unused.size();
for (auto offset : offsets) {
if (offset >= limit) {
MS_LOG(EXCEPTION) << "Index offset is exceed the limit of unused nodes.";
}
if (unused[offset] >= node_limit) {
MS_LOG(EXCEPTION) << "Index offset is exceed the limit of nodes.";
}
valid_indices.push_back(unused[offset]);
target_nodes.push_back(nodes[unused[offset]]);
}
return std::make_tuple(target_nodes, valid_indices);
}
std::tuple<std::vector<bool>, std::vector<ParallelInfo>> ParallelOpFusion::DoSearchInSortedCandidates(
size_t origin_size, const AnfNodePtrList &candidates, std::map<AnfNodePtr, int> *origin_indices,
std::map<AnfNodePtr, int> *sorted_indices) {
auto get_index = [](std::map<AnfNodePtr, int> *indices, const AnfNodePtr &node) -> int {
MS_EXCEPTION_IF_NULL(node);
if (indices->find(node) == indices->end()) {
MS_LOG(EXCEPTION) << "There is no index record for node " << node->ToString();
}
return (*indices)[node];
};
std::vector<ParallelInfo> parallel_infos;
std::vector<bool> origin_candidates_used(origin_size, false);
std::vector<bool> sorted_candidates_used(candidates.size(), false);
for (size_t i = 0; i < candidates.size(); ++i) {
if (sorted_candidates_used[i]) {
continue;
}
int max_benefit = 0;
ParallelInfo best_parallel_info;
std::set<int> bad_set;
size_t unused_num = 0;
for (size_t j = i + 1; j < sorted_candidates_used.size(); ++j) {
unused_num += sorted_candidates_used[j] ? 0 : 1;
}
if (unused_num < 1) {
break;
}
unused_num = std::min(unused_num, config_.max_num_for_fuse() - 1);
size_t begin = 1, end = unused_num;
while (begin <= end) {
size_t mid = (begin + end) / 2;
std::vector<int> tc(mid);
std::iota(tc.begin(), tc.end(), 1);
AnfNodePtrList other_candidates;
std::tie(other_candidates, std::ignore) =
GetAvaliableNodesByOffset(i, tc, sorted_candidates_used, candidates, std::set<int>());
int benefit;
std::tie(std::ignore, benefit) = cost_model_ptr_->CalFuseInfo(other_candidates);
if (benefit > 0) {
begin = mid + 1;
} else {
end = mid - 1;
}
}
if (begin > 1) {
std::vector<int> tc(begin - 1);
std::iota(tc.begin(), tc.end(), 1);
AnfNodePtrList other_candidates;
std::tie(other_candidates, std::ignore) =
GetAvaliableNodesByOffset(i, tc, sorted_candidates_used, candidates, std::set<int>());
auto [dim_infos, benefit] = cost_model_ptr_->CalFuseInfo(other_candidates);
if (benefit <= 0) {
MS_LOG(EXCEPTION) << "Internal error in candidate search!";
}
max_benefit = benefit;
best_parallel_info = ParallelInfo(other_candidates, dim_infos);
i += begin - 1;
}
if (max_benefit > 0) {
parallel_infos.push_back(best_parallel_info);
for (const auto &node : best_parallel_info.nodes()) {
sorted_candidates_used[get_index(sorted_indices, node)] = true;
origin_candidates_used[get_index(origin_indices, node)] = true;
}
}
}
// Current nodes is not suitable to fuse, so pop first node to try other fusion possibility.
if (parallel_infos.size() == 0) {
origin_candidates_used[get_index(origin_indices, candidates[0])] = true;
}
return std::make_tuple(origin_candidates_used, parallel_infos);
}
std::tuple<std::vector<bool>, std::vector<ParallelInfo>> ParallelOpFusion::SearchFuseNodesInCandidates(
const AnfNodePtrList &cs) {
std::map<AnfNodePtr, int> origin_indices;
std::vector<size_t> indices;
for (size_t i = 0; i < cs.size(); ++i) {
if (cs[i]) {
origin_indices.insert({cs[i], i});
indices.push_back(i);
}
}
// A calculated heavy node can cover more lighter nodes' cost, so sort them first.
std::map<size_t, int> cal_amounts;
for (auto id : indices) {
cal_amounts[id] = cost_model_ptr_->GetNodeCalAmount(cs[id]);
}
std::sort(indices.begin(), indices.end(),
[&cal_amounts](size_t a, size_t b) { return cal_amounts[a] > cal_amounts[b]; });
AnfNodePtrList candidates;
for (size_t i = 0; i < indices.size(); ++i) {
candidates.push_back(cs[indices[i]]);
}
std::map<AnfNodePtr, int> sorted_indices;
for (size_t i = 0; i < candidates.size(); ++i) {
sorted_indices.insert({candidates[i], i});
}
return DoSearchInSortedCandidates(cs.size(), candidates, &origin_indices, &sorted_indices);
}
void ParallelOpFusion::SearchFuseNodesInParallelGroup(const std::vector<AnfNodePtrList> &group,
std::vector<ParallelInfo> *parallel_infos) {
std::vector<AnfNodePtrList::const_iterator> tails;
std::vector<AnfNodePtrList::const_iterator> ended;
for (const auto &node_list : group) {
tails.push_back(node_list.begin());
ended.push_back(node_list.end());
}
auto get_candidates = [&tails, &ended]() {
AnfNodePtrList candidates;
for (size_t id = 0; id < tails.size(); ++id) {
candidates.push_back(tails[id] != ended[id] ? *tails[id] : AnfNodePtr());
}
return candidates;
};
auto update_tails = [&tails](const std::vector<bool> &used) {
if (used.size() != tails.size()) {
MS_LOG(EXCEPTION) << "Judged nodes size is not equal to left ones!";
}
for (size_t id = 0; id < used.size(); ++id) {
if (used[id]) {
tails[id]++;
}
}
};
auto valid_candidate_num = [](const AnfNodePtrList &cs) {
return std::count_if(cs.begin(), cs.end(), [](const AnfNodePtr &n) { return n != nullptr; });
};
auto candidates = get_candidates();
while (valid_candidate_num(candidates) > 1) {
auto [used, fnds] = SearchFuseNodesInCandidates(candidates);
std::transform(fnds.cbegin(), fnds.cend(), std::back_insert_iterator(*parallel_infos),
[](const ParallelInfo &pi) { return pi; });
update_tails(used);
candidates = get_candidates();
}
}
std::vector<ParallelInfo> ParallelOpFusion::SearchFusableParallelCNodes(
const std::vector<std::vector<AnfNodePtrList>> &groups) {
// Find core-fusable groups with cost model.
std::vector<ParallelInfo> parallel_infos;
for (const auto &group : groups) {
SearchFuseNodesInParallelGroup(group, &parallel_infos);
}
return parallel_infos;
}
void ParallelOpFusion::SetFusedParallelOpAttrToReturnNode(const ParallelInfo &parallel_info) {
for (size_t i = 0; i < parallel_info.GetSize(); ++i) {
const auto &fuse_nodes = parallel_info.nodes();
std::vector<size_t> info = {i, std::dynamic_pointer_cast<CommonDimInfo>(parallel_info.dims()[i])->dim_info()};
if (!AnfAlgo::IsGraphKernel(fuse_nodes[i])) {
MakeCNodeSafeForAttr(fuse_nodes[i]);
AnfAlgo::SetNodeAttr(kAttrParallelDimInfo, MakeValue<std::vector<size_t>>(info), fuse_nodes[i]);
} else {
auto node_g = GetValueNode<FuncGraphPtr>((fuse_nodes[i]->cast<CNodePtr>())->input(0));
auto out_node = node_g->output();
if (IsPrimitiveCNode(out_node, prim::kPrimMakeTuple)) {
auto inputs = out_node->cast<CNodePtr>()->inputs();
for (size_t j = 1; j < inputs.size(); ++j) {
MakeCNodeSafeForAttr(inputs[j]);
AnfAlgo::SetNodeAttr(kAttrParallelDimInfo, MakeValue<std::vector<size_t>>(info), inputs[j]);
}
} else {
MakeCNodeSafeForAttr(out_node);
AnfAlgo::SetNodeAttr(kAttrParallelDimInfo, MakeValue<std::vector<size_t>>(info), out_node);
}
}
}
}
void PostProcessForNewSubGraphCNode(const AnfNodePtr &node, const std::shared_ptr<session::KernelGraph> &kernel_graph) {
auto mng = kernel_graph->manager();
if (mng == nullptr) {
mng = Manage(kernel_graph, true);
kernel_graph->set_manager(mng);
}
const auto &users = mng->node_users()[node];
std::vector<std::pair<AnfNodePtr, int>> sons;
for (const auto &[user, index] : users) {
if (!IsPrimitiveCNode(user, prim::kPrimTupleGetItem)) {
sons.emplace_back(user, index);
continue;
}
auto &[fake_first_grad_son, grad_index] = *((mng->node_users()[user]).begin());
sons.emplace_back(fake_first_grad_son, grad_index);
}
AnfNodePtrList latter_to_delete;
for (const auto &[son, index] : sons) {
if (!IsPrimitiveCNode(son, prim::kPrimDepend) || index != kDependAttachNodeIndex) {
continue;
}
latter_to_delete.push_back(son);
}
if (latter_to_delete.empty()) {
return;
}
std::vector<AnfNodePtr>::iterator delete_begin = latter_to_delete.begin();
if (latter_to_delete.size() == sons.size()) {
// Left one Depend node relation and delete others!
++delete_begin;
}
for (; delete_begin != latter_to_delete.end(); ++delete_begin) {
auto depend_anfnode = *delete_begin;
auto depend_cnode = depend_anfnode->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(depend_cnode);
auto depend_prior_node = depend_cnode->input(kRealInputIndexInDepend);
mng->Replace(depend_anfnode, depend_prior_node);
}
}
bool ParallelOpFusion::CreateParallelOpSubGraphs(const std::vector<ParallelInfo> &parallel_infos,
const std::shared_ptr<session::KernelGraph> &kernel_graph) {
bool changed = false;
for (size_t i = 0; i < parallel_infos.size(); ++i) {
const auto &fuse_nodes = parallel_infos[i].nodes();
if (fuse_nodes.size() <= 1) {
continue;
}
changed = true;
SetFusedParallelOpAttrToReturnNode(parallel_infos[i]);
AnfNodePtr sg_node;
std::tie(sg_node, std::ignore) = FuseNodesToSubGraph(fuse_nodes, kernel_graph, "parallel");
PostProcessForNewSubGraphCNode(sg_node, kernel_graph);
DumpParallelFusionDetail(fuse_nodes, sg_node);
}
return changed;
}
bool ParallelOpFusion::Run(const FuncGraphPtr &graph) {
MS_EXCEPTION_IF_NULL(graph);
auto kernel_graph = graph->cast<std::shared_ptr<session::KernelGraph>>();
MS_EXCEPTION_IF_NULL(kernel_graph);
cost_model_ptr_ = ParellelCostModelWarehouse::Instance().GetParallelCostModel(target_);
MS_EXCEPTION_IF_NULL(cost_model_ptr_);
auto nodes = TopoSort(kernel_graph->get_return());
std::reverse(nodes.begin(), nodes.end());
auto node_rels = GenAnalysisGraph(nodes);
auto groups = SearchParallelGroups(node_rels);
auto parallel_infos = SearchFusableParallelCNodes(groups);
// Create core-fuse subgraph and change origin graph.
return CreateParallelOpSubGraphs(parallel_infos, kernel_graph);
}
} // namespace opt
} // namespace mindspore

View File

@ -0,0 +1,122 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_PARALLEL_FUSION_H_
#define MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_PARALLEL_FUSION_H_
#include <map>
#include <memory>
#include <set>
#include <sstream>
#include <string>
#include <tuple>
#include <vector>
#include "base/base.h"
#include "backend/session/anf_runtime_algorithm.h"
#include "backend/optimizer/common/optimizer.h"
#include "backend/optimizer/graph_kernel/parallel_cost_model.h"
#include "backend/session/kernel_graph.h"
#include "utils/ms_context.h"
namespace mindspore {
namespace opt {
class ParallelInfo {
public:
ParallelInfo() = default;
ParallelInfo(const AnfNodePtrList &nodes, const std::vector<DimInfoPtr> &dims) : nodes_(nodes), dims_(dims) {}
ParallelInfo(const ParallelInfo &obj) {
nodes_ = obj.nodes_;
dims_ = obj.dims_;
}
~ParallelInfo() = default;
size_t GetSize() const {
if (nodes_.size() != dims_.size()) {
MS_LOG(EXCEPTION) << "Internal error in parallel info!";
}
return nodes_.size();
}
const AnfNodePtrList &nodes() const { return nodes_; }
const std::vector<DimInfoPtr> &dims() const { return dims_; }
private:
AnfNodePtrList nodes_;
std::vector<DimInfoPtr> dims_;
};
class ParallelConfig {
public:
ParallelConfig() = default;
explicit ParallelConfig(size_t max_n) : max_num_for_fuse_(max_n) {}
explicit ParallelConfig(const ParallelConfig &obj) { max_num_for_fuse_ = obj.max_num_for_fuse_; }
~ParallelConfig() = default;
size_t max_num_for_fuse() { return max_num_for_fuse_; }
private:
size_t max_num_for_fuse_{10}; // Too many nodes to fuse together may produce bad result.
};
struct NodeRelation {
public:
NodeRelation() {}
~NodeRelation() = default;
OrderedSet<AnfNodePtr> pres;
OrderedSet<AnfNodePtr> nexts;
};
class ParallelOpFusion : public Pass {
public:
ParallelOpFusion(const std::string &target, const ParallelConfig &config)
: Pass("parallel_fusion"), target_(target), config_(config) {}
~ParallelOpFusion() override = default;
bool Run(const FuncGraphPtr &graph) override;
private:
std::tuple<AnfNodePtrList, std::vector<int>> GetAvaliableNodesByOffset(int start, const std::vector<int> &offsets,
const std::vector<bool> &used,
const AnfNodePtrList &nodes,
const std::set<int> &excludes);
std::tuple<std::vector<bool>, std::vector<ParallelInfo>> DoSearchInSortedCandidates(
size_t origin_size, const AnfNodePtrList &candidates, std::map<AnfNodePtr, int> *origin_indices,
std::map<AnfNodePtr, int> *sorted_indices);
std::tuple<std::vector<bool>, std::vector<ParallelInfo>> SearchFuseNodesInCandidates(const AnfNodePtrList &cs);
void SearchFuseNodesInParallelGroup(const std::vector<AnfNodePtrList> &group,
std::vector<ParallelInfo> *parallel_infos);
std::vector<ParallelInfo> SearchFusableParallelCNodes(const std::vector<std::vector<AnfNodePtrList>> &groups);
void SetFusedParallelOpAttrToReturnNode(const ParallelInfo &parallel_info);
bool CreateParallelOpSubGraphs(const std::vector<ParallelInfo> &parallel_infos,
const std::shared_ptr<session::KernelGraph> &kernel_graph);
OrderedMap<AnfNodePtr, NodeRelation> GenAnalysisGraph(const AnfNodePtrList &nodes);
std::vector<std::vector<AnfNodePtrList>> SearchParallelGroups(const OrderedMap<AnfNodePtr, NodeRelation> &node_rels);
std::string target_;
ParallelConfig config_;
ParallelCostModelPtr cost_model_ptr_;
std::set<AnfNodePtr> virtual_noout_nodes_;
std::set<AnfNodePtr> ignore_noin_nodes_;
};
using ParallelOpFusionPtr = std::shared_ptr<ParallelOpFusion>;
} // namespace opt
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_PARALLEL_FUSION_H_

View File

@ -43,6 +43,7 @@
#include "backend/optimizer/graph_kernel/arithmetic_simplify.h"
#include "backend/optimizer/graph_kernel/basic_ops_fusion.h"
#include "backend/optimizer/graph_kernel/clean_all_in_once.h"
#include "backend/optimizer/graph_kernel/depend_formater.h"
#include "backend/optimizer/graph_kernel/eliminate_redundant_output.h"
#include "backend/optimizer/graph_kernel/tensor_promotion.h"
#include "backend/optimizer/graph_kernel/graph_kernel_splitter.h"
@ -51,6 +52,7 @@
#include "backend/optimizer/graph_kernel/graph_kernel_cse.h"
#include "backend/optimizer/graph_kernel/shape_ops_splitter.h"
#include "backend/optimizer/graph_kernel/value_graph_binder.h"
#include "backend/optimizer/graph_kernel/parallel_fusion.h"
#include "backend/optimizer/pass/communication_op_fusion.h"
#include "backend/optimizer/pass/getitem_tuple.h"
#include "common/trans.h"
@ -179,6 +181,7 @@ void GPUSession::GraphKernelOptimize(const std::shared_ptr<KernelGraph> &kernel_
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>("graph_kernel_pm");
std::vector<PrimitivePtr> duplicated_ops = {prim::kPrimReshape, prim::kPrimExpandDims, prim::kPrimCast};
pm->AddPass(std::make_shared<opt::DependFormater>()); // Make more fusion opportunity.
pm->AddPass(std::make_shared<opt::GraphKernelExpander>());
pm->AddPass(std::make_shared<opt::ShapeOpsSplitter>(duplicated_ops));
pm->AddPass(std::make_shared<opt::BasicOpsFusion>());
@ -196,7 +199,8 @@ void GPUSession::GraphKernelOptimize(const std::shared_ptr<KernelGraph> &kernel_
// will be exposed, use GetitemTuple Pass to delete them.
pm->AddPass(std::make_shared<opt::GetitemTuple>());
pm->AddPass(std::make_shared<opt::AtomicCleanInsertter>());
pm->AddPass(std::make_shared<opt::CleanAllInOnce>());
pm->AddPass(std::make_shared<opt::DependFormater>()); // Prevent fake loop in parallel fusion.
pm->AddPass(std::make_shared<opt::ParallelOpFusion>(kGPUDevice, opt::ParallelConfig(7)));
pm->AddPass(std::make_shared<opt::BindValueToGraph>());
optimizer->AddPassManager(pm);
(void)optimizer->Optimize(kernel_graph);

View File

@ -1,5 +1,5 @@
/**
* Copyright 2019 Huawei Technologies Co., Ltd
* Copyright 2019-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -382,6 +382,7 @@ constexpr auto kAttrPadding = "padding";
constexpr auto kAttrIsGrad = "is_grad";
constexpr auto kAttrRecompute = "recompute";
constexpr auto kAttrNeedCseAfterRecompute = "need_cse_after_recompute";
constexpr auto kAttrParallelDimInfo = "parallel_dim_info";
// attr value
constexpr auto kValueTargetSwitch = "target_switch";

View File

@ -0,0 +1,54 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==========================================================================
"""test graph parallel case"""
import model
def injective_graph(shape):
gb = model.GraphBuilder()
with gb.graph_scope('injective') as _:
a1 = gb.tensor(shape, 'float32')
a2 = gb.emit('Abs', a1)
a3 = gb.emit('Abs', a2)
gb.emit('Abs', a3)
return gb.get()[0]
def reduce_graph(shape, reduce_axis):
gb = model.GraphBuilder()
with gb.graph_scope('reduce') as _:
a1 = gb.tensor(shape, 'float32')
a2 = gb.emit('Abs', a1)
a3 = gb.emit('Abs', a2)
gb.emit('ReduceSum', a3, 'C', attrs={'reduce_axis': reduce_axis})
return gb.get()[0]
def control_graph(shape):
gb = model.GraphBuilder()
with gb.graph_scope('control') as _:
a1 = gb.tensor(shape, 'float32')
a2 = gb.emit('Abs', a1)
gb.emit('ControlDepend', a2)
return gb.get()[0]
def block_fusion(graphs):
gain = model.parallel_estimate(graphs)
print("fusion = {}, bottleneck = {}, gain = {}".format(gain.fusion_type, gain.bottleneck, gain.gain))
return gain.fusion_type == "block_fusion" and gain.gain > 0
if __name__ == "__main__":
assert block_fusion([injective_graph([40, 1024]), injective_graph([40, 1024])])
assert block_fusion([reduce_graph([1024, 1024], [1]), injective_graph([24, 1024])])
assert not block_fusion([reduce_graph([1024, 1024], [1]), injective_graph([50, 1024])])
assert not block_fusion([reduce_graph([1024, 1024], [0, 1]), injective_graph([1024, 1024])])
assert block_fusion([control_graph([20, 128]), injective_graph([40, 1024])])