add topk op

This commit is contained in:
yangzhenzhang 2021-02-25 15:10:08 +08:00
parent cb3571a1ca
commit d070af122f
7 changed files with 406 additions and 2 deletions

View File

@ -204,6 +204,7 @@ using RsqrtCost = SqrtCost;
using AsinhCost = SqrtCost;
using AcoshCost = SqrtCost;
using ReLUV2Cost = SqrtCost;
using TopKCost = SqrtCost;
class ReLU6Cost : public CastCost {
public:

View File

@ -192,6 +192,7 @@ REGISTER(ConcatInfo);
REGISTER(SplitInfo);
REGISTER(UniqueInfo);
REGISTER(GatherNdInfo);
REGISTER(TopKInfo);
} // namespace parallel
} // namespace mindspore

View File

@ -51,5 +51,6 @@
#include "frontend/parallel/ops_info/uniform_candidate_sampler_info.h"
#include "frontend/parallel/ops_info/reluv2_info.h"
#include "frontend/parallel/ops_info/gathernd_info.h"
#include "frontend/parallel/ops_info/topk_info.h"
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_HEAD_FILES_H_

View File

@ -0,0 +1,233 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "frontend/parallel/ops_info/topk_info.h"
#include <algorithm>
#include <memory>
#include <utility>
#include <vector>
#include "frontend/parallel/device_matrix.h"
#include "frontend/parallel/strategy.h"
#include "frontend/parallel/tensor_layout/tensor_redistribution.h"
#include "pipeline/jit/resource.h"
namespace mindspore {
namespace parallel {
Status TopKInfo::CheckStrategy(const StrategyPtr &strategy) {
MS_EXCEPTION_IF_NULL(strategy);
if (CheckStrategyValue(strategy, inputs_shape_) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Invalid strategy";
return FAILED;
}
std::vector<Dimensions> stra = strategy->GetInputDim();
if (stra.empty()) {
MS_LOG(ERROR) << name_ << ": The strategy is empty";
return FAILED;
}
if (stra[0].back() != 1) {
MS_LOG(ERROR) << name_ << ": Now we can not support to split last dimension";
return FAILED;
}
return SUCCESS;
}
Status TopKInfo::InferDevMatrixShape() {
MS_EXCEPTION_IF_NULL(strategy_);
std::vector<Dimensions> stra = strategy_->GetInputDim();
if (stra.empty()) {
MS_LOG(ERROR) << name_ << "The strategy is empty";
return FAILED;
}
dev_matrix_shape_ = stra[0];
return SUCCESS;
}
Status TopKInfo::InferTensorMap() {
TensorMap tensor_map;
if (inputs_shape_.empty()) {
MS_LOG(ERROR) << name_ << "The inputs shape is empty";
return FAILED;
}
// cannot use dev_matrix_shape_ replace inputs_shape_[0], because it may not be fully split in all devices.
int64_t size = SizeToLong(inputs_shape_[0].size());
for (int64_t i = 0; i < size; ++i) {
tensor_map.push_back(size - i - 1);
}
for (size_t i = 0; i < inputs_shape_.size(); ++i) {
inputs_tensor_map_.push_back(tensor_map);
}
outputs_tensor_map_.push_back(tensor_map); // values
outputs_tensor_map_.push_back(tensor_map); // indices
return SUCCESS;
}
Status TopKInfo::InferTensorInfo() {
if (inputs_shape_.empty() || outputs_shape_.empty() || inputs_tensor_map_.empty() || outputs_tensor_map_.empty()) {
MS_LOG(ERROR) << name_ << ": Invalid args";
return FAILED;
}
TensorLayout input_layout, output_layout;
for (size_t i = 0; i < inputs_shape_.size(); ++i) {
// infer tensor layout
if (input_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_[i], inputs_shape_[i]) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Infer input tensor layout failed.";
return FAILED;
}
TensorInfo input_tensor_info(input_layout);
inputs_tensor_info_.push_back(input_tensor_info);
}
if (output_layout.InitFromVector(dev_matrix_shape_, outputs_tensor_map_[0], outputs_shape_[0]) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Infer output tensor layout failed.";
return FAILED;
}
TensorInfo output_tensor_info(output_layout);
outputs_tensor_info_.push_back(output_tensor_info); // values
outputs_tensor_info_.push_back(output_tensor_info); // indices
return SUCCESS;
}
Status TopKInfo::InferAsLossDivisor() {
if (outputs_tensor_map_.empty()) {
MS_LOG(ERROR) << name_ << ": The outputs tensor map is empty";
return FAILED;
}
MS_LOG(INFO) << name_ << " has two outputs, use output[0] to infer";
if (outputs_tensor_map_[0].empty()) {
as_loss_divisor_ = stage_device_size_;
MS_LOG(INFO) << name_ << ": The output is a scalar, use the dev size" << as_loss_divisor_ << " as loss divisor";
return SUCCESS;
}
as_loss_divisor_ = ComputeRepeatDeviceNumByTensorMap(dev_matrix_shape_, outputs_tensor_map_[0]);
std::string dev_matrix_shape_str = ShapeToString(dev_matrix_shape_);
std::string output_tensor_map_str = ShapeToString(outputs_tensor_map_[0]);
MS_LOG(INFO) << name_ << ": the dev matrix shape, the output tensor map, and loss divisor is " << dev_matrix_shape_str
<< ", " << output_tensor_map_str << ", " << as_loss_divisor_;
return SUCCESS;
}
Status TopKInfo::InferMirrorOps() {
mirror_ops_.clear();
if (inputs_shape_.empty()) {
MS_LOG(INFO) << name_ << ": The inputs size is empty";
return SUCCESS;
}
if (inputs_tensor_map_.size() != inputs_shape_.size()) {
MS_LOG(ERROR) << name_ << ": The size of inputs tensor map is not equal to the size of inputs shape";
return FAILED;
}
bool group_is_empty = true;
for (size_t i = 0; i < inputs_tensor_map_.size(); ++i) {
std::vector<Group> group;
if (CreateGroupByTensorMap(inputs_tensor_map_[i], &group) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Create group failed, the input index is " << i;
mirror_ops_.clear();
return FAILED;
}
OperatorVector mirror_op;
if (group.empty()) {
MS_LOG(INFO) << name_ << ": The mirror group is empty, the input index is " << i;
mirror_ops_.push_back(mirror_op);
continue;
}
group_is_empty = false;
mirror_op = CreateMirrorOps(group[0].name(), group[0].GetDevNum());
mirror_ops_.push_back(mirror_op);
}
if (group_is_empty) {
mirror_ops_.clear();
MS_LOG(INFO) << name_ << ": No need to insert mirror ops";
return SUCCESS;
}
OperatorVector tmp_mirror_op; // tmp mirror op for 'k'
mirror_ops_.push_back(tmp_mirror_op);
return SUCCESS;
}
Status TopKInfo::SetCostUnderStrategy(const StrategyPtr &strategy) { return SetCostUnderStrategyBase(strategy); }
Status TopKInfo::GenerateStrategies(int64_t stage_id) {
if (InferAttrs() != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Infer attrs failed";
return FAILED;
}
if (inputs_shape_.empty()) {
MS_LOG(ERROR) << name_ << ": The inputs shape is empty";
return FAILED;
}
// to generate the first input's strategy
Shape input_split(inputs_shape_[0].size(), 1);
input_split.back() = 0; // the last dimension can not be split
Shapes splittable_input = {input_split};
Shapes tmp_inputs_shape = {inputs_shape_[0]};
std::vector<StrategyPtr> sp_vector;
if (GenerateStrategiesForIndependentInputs(stage_id, tmp_inputs_shape, splittable_input, &sp_vector) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Generate strategies failed";
return FAILED;
}
size_t success = 0;
for (auto &sp : sp_vector) {
PrintStrategy(sp);
if (SetCostUnderStrategy(sp) == SUCCESS) {
success++;
MS_LOG(INFO) << name_ << ": Successfully generated " << success << " strategy.";
PrintStrategy(sp);
}
}
return SUCCESS;
}
Status TopKInfo::Init(const StrategyPtr &strategy) {
if (InitWithAutoRepeatCalc(strategy) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Init failed.";
return FAILED;
}
MS_LOG(INFO) << name_ << ": Init success.";
return SUCCESS;
}
Status TopKInfo::InitForCostModel(const StrategyPtr &strategy) {
if (InitForCostModelWithAutoRepeatCalc(strategy) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Init for cost model failed.";
return FAILED;
}
MS_LOG(INFO) << name_ << ": Init for cost model success.";
return SUCCESS;
}
} // namespace parallel
} // namespace mindspore

View File

@ -0,0 +1,60 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_TOPK_INFO_H_
#define MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_TOPK_INFO_H_
#include <string>
#include <memory>
#include <unordered_map>
#include <vector>
#include "ir/value.h"
#include "frontend/parallel/auto_parallel/operator_costmodel.h"
#include "frontend/parallel/ops_info/operator_info.h"
#include "frontend/parallel/strategy.h"
namespace mindspore {
namespace parallel {
// the last dimension of input can not be split, other dimensions can be split
class TopKInfo : public OperatorInfo {
public:
TopKInfo(const std::string &operator_name, const Shapes &inputs_shape, const Shapes &outputs_shape,
const PrimitiveAttrs &attrs)
: OperatorInfo(operator_name, inputs_shape, outputs_shape, attrs, std::make_shared<TopKCost>()) {}
~TopKInfo() override = default;
Status Init(const StrategyPtr &strategy) override;
Status InitForCostModel(const StrategyPtr &strategy) override;
Status GenerateStrategies(int64_t) override;
Status SetCostUnderStrategy(const StrategyPtr &) override;
protected:
Status GetAttrs() override { return SUCCESS; }
Status CheckStrategy(const StrategyPtr &strategy) override;
Status InferForwardCommunication() override { return SUCCESS; }
Status InferMirrorOps() override; // can not use OperatorInfo::InferMirrorOps(), since the 'k' of topk is scalar
Status InferTensorInfo() override;
Status InferDevMatrixShape() override;
Status InferTensorMap() override;
Status InferAsLossDivisor() override;
};
using TopKInfoPtr = std::shared_ptr<TopKInfo>;
} // namespace parallel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_TOPK_INFO_H_

View File

@ -163,8 +163,7 @@ bool IsSplittableOperator(const std::string &op_name) {
BESSELI0E, BESSELI1E, FLOORMOD, ASSIGN, ASSIGN_ADD, ATAN2, DIVNONAN, LOGICALAND, LOGICALOR, ELU, RELU6, RELUV2,
SOFTPLUS, SOFTSIGN, GREATEREQUAL, LESSEQUAL, LESS, APPROXIMATEEQUAL, MOD, UNIQUE, UNSORTED_SEGMENT_SUM,
UNSORTED_SEGMENT_MIN, REPEAT_ELEMENTS, TENSOR_DOT, RANGE, UNIFORM_CANDIDATE_SAMPLER, SLICE,
UNSORTED_SEGMENT_MAX, GATHER_ND};
UNSORTED_SEGMENT_MAX, GATHER_ND, TOPK};
// clang-format on
auto iter = splittable_op.find(op_name);

View File

@ -0,0 +1,109 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore as ms
from mindspore import context, Tensor, Parameter
from mindspore.nn import Cell, Momentum
from mindspore.ops import operations as P
from mindspore.train import Model
from tests.dataset_mock import MindData
class Dataset(MindData):
def __init__(self, predict, label, length=3):
super(Dataset, self).__init__(size=length)
self.predict = predict
self.label = label
self.index = 0
self.length = length
def __iter__(self):
return self
def __next__(self):
if self.index >= self.length:
raise StopIteration
self.index += 1
return self.predict, self.label
def reset(self):
self.index = 0
class Net(Cell):
def __init__(self, w1, strategy1=None, strategy2=None):
super().__init__()
self.mul = P.Mul().shard(strategy1)
self.w1 = Parameter(w1, "w1")
self.topk = P.TopK().shard(strategy2)
def construct(self, x, b):
out = self.mul(x, self.w1)
out, _ = self.topk(out, 8)
return out
_x = Tensor(np.ones([16, 64]), dtype=ms.float32)
_b = Tensor(np.ones([16, 64]), dtype=ms.float32)
_w1 = Tensor(np.ones([128, 64]), dtype=ms.float32)
def compile_net(net):
context.set_context(save_graphs=True)
learning_rate = 0.1
momentum = 0.9
epoch_size = 2
dataset = Dataset(_x, _b)
opt = Momentum(net.trainable_params(), learning_rate, momentum)
model = Model(net, optimizer=opt)
model.train(epoch_size, dataset, dataset_sink_mode=False)
context.reset_auto_parallel_context()
def test_topk_data_parallel():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((8, 1), (8, 1))
strategy2 = ((8, 1),)
net = Net(_w1, strategy1, strategy2)
compile_net(net)
def test_topk_model_parallel():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((2, 4), (2, 4))
strategy2 = ((2, 1),)
net = Net(_w1, strategy1, strategy2)
compile_net(net)
def test_topk_auto_parallel():
context.set_auto_parallel_context(
parallel_mode="auto_parallel", device_num=8, global_rank=0)
net = Net(_w1)
compile_net(net)
def test_topk_strategy_error():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((8, 1), (8, 1))
strategy2 = ((1, 8),)
net = Net(_w1, strategy1, strategy2)
with pytest.raises(RuntimeError):
compile_net(net)