!37734 [MSLITE][CPU] reduce func api fix
Merge pull request !37734 from Greatpan/reduce_doc_fix
This commit is contained in:
commit
ce749de80c
|
@ -212,13 +212,13 @@ Reduction算子
|
|||
|
||||
* - functional
|
||||
- Description
|
||||
* - mindspore.ops.reduce_max
|
||||
* - mindspore.ops.amax
|
||||
- Refer to :class:`mindspore.ops.ReduceMax`.
|
||||
* - mindspore.ops.reduce_mean
|
||||
* - mindspore.ops.mean
|
||||
- Refer to :class:`mindspore.ops.ReduceMean`.
|
||||
* - mindspore.ops.reduce_min
|
||||
* - mindspore.ops.amin
|
||||
- Refer to :class:`mindspore.ops.ReduceMin`.
|
||||
* - mindspore.ops.reduce_prod
|
||||
* - mindspore.ops.prod
|
||||
- Refer to :class:`mindspore.ops.ReduceProd`.
|
||||
* - mindspore.ops.reduce_sum
|
||||
- Refer to :class:`mindspore.ops.ReduceSum`.
|
||||
|
|
|
@ -211,13 +211,13 @@ Reduction Operators
|
|||
|
||||
* - functional
|
||||
- Description
|
||||
* - mindspore.ops.reduce_max
|
||||
* - mindspore.ops.amax
|
||||
- Refer to :class:`mindspore.ops.ReduceMax`.
|
||||
* - mindspore.ops.reduce_mean
|
||||
* - mindspore.ops.mean
|
||||
- Refer to :class:`mindspore.ops.ReduceMean`.
|
||||
* - mindspore.ops.reduce_min
|
||||
* - mindspore.ops.amin
|
||||
- Refer to :class:`mindspore.ops.ReduceMin`.
|
||||
* - mindspore.ops.reduce_prod
|
||||
* - mindspore.ops.prod
|
||||
- Refer to :class:`mindspore.ops.ReduceProd`.
|
||||
* - mindspore.ops.reduce_sum
|
||||
- Refer to :class:`mindspore.ops.ReduceSum`.
|
||||
|
|
|
@ -159,7 +159,7 @@ BuiltInTypeMap &GetMethodMap() {
|
|||
{"xdivy", std::string("xdivy")}, // P.Xdivy
|
||||
{"abs", std::string("abs_")}, // C.abs_
|
||||
{"mean", std::string("mean")}, // C.mean
|
||||
{"reduce_prod", std::string("reduce_prod")}, // C.reduce_prod
|
||||
{"prod", std::string("prod")}, // C.reduce_prod
|
||||
{"__truediv__", std::string("truediv")}, // C.truediv
|
||||
{"__floordiv__", std::string("floordiv")}, // C.floordiv
|
||||
{"__mod__", std::string("mod")}, // C.mod
|
||||
|
|
|
@ -108,7 +108,7 @@ def prod(x, axis=(), keep_dims=False):
|
|||
>>> print(output)
|
||||
6.0
|
||||
"""
|
||||
return F.reduce_prod(x, axis, keep_dims)
|
||||
return F.prod(x, axis, keep_dims)
|
||||
|
||||
|
||||
def addcdiv(input_data, x1, x2, value):
|
||||
|
|
|
@ -1508,7 +1508,7 @@ class Tensor(Tensor_):
|
|||
6.0
|
||||
"""
|
||||
self._init_check()
|
||||
return tensor_operator_registry.get('reduce_prod')(self, axis, keep_dims)
|
||||
return tensor_operator_registry.get('prod')(self, axis, keep_dims)
|
||||
|
||||
def select(self, condition, y):
|
||||
r"""
|
||||
|
|
|
@ -232,10 +232,10 @@ from .math_func import (
|
|||
baddbmm,
|
||||
cummin,
|
||||
cummax,
|
||||
reduce_min,
|
||||
reduce_max,
|
||||
reduce_mean,
|
||||
reduce_prod,
|
||||
amin,
|
||||
amax,
|
||||
mean,
|
||||
prod,
|
||||
all,
|
||||
any,
|
||||
sparse_segment_mean,
|
||||
|
|
|
@ -3820,7 +3820,7 @@ def logsumexp(x, axis, keep_dims=False):
|
|||
return x_logsumexp + x_max
|
||||
|
||||
|
||||
def reduce_min(x, axis, keep_dims=False):
|
||||
def amin(x, axis, keep_dims=False):
|
||||
r"""
|
||||
Reduces a dimension of a tensor by the minimum value in the dimension, by default. And also can
|
||||
reduce a dimension of `x` along the axis. Determine whether the dimensions of the output and input are the same by
|
||||
|
@ -3844,7 +3844,7 @@ def reduce_min(x, axis, keep_dims=False):
|
|||
|
||||
Examples:
|
||||
>>> x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
|
||||
>>> output = ops.reduce_min(x, 1, keep_dims=True)
|
||||
>>> output = ops.amin(x, 1, keep_dims=True)
|
||||
>>> result = output.shape
|
||||
>>> print(result)
|
||||
(3, 1, 5, 6)
|
||||
|
@ -3852,25 +3852,25 @@ def reduce_min(x, axis, keep_dims=False):
|
|||
>>> x = Tensor(np.array([[[1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]],
|
||||
... [[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]],
|
||||
... [[7, 7, 7, 7, 7, 7], [8, 8, 8, 8, 8, 8], [9, 9, 9, 9, 9, 9]]]), mindspore.float32)
|
||||
>>> output = ops.reduce_min(x)
|
||||
>>> output = ops.amin(x)
|
||||
>>> print(output)
|
||||
[[[1.]]]
|
||||
>>> print(output.shape)
|
||||
(1, 1, 1)
|
||||
>>> # case 2: Reduces a dimension along axis 0.
|
||||
>>> output = opops.reduce_min(x, 0)
|
||||
>>> output = opops.amin(x, 0)
|
||||
>>> print(output)
|
||||
[[[1. 1. 1. 1. 1. 1.]
|
||||
[2. 2. 2. 2. 2. 2.]
|
||||
[3. 3. 3. 3. 3. 3.]]]
|
||||
>>> # case 3: Reduces a dimension along axis 1.
|
||||
>>> output = ops.reduce_min(x, 1)
|
||||
>>> output = ops.amin(x, 1)
|
||||
>>> print(output)
|
||||
[[[1. 1. 1. 1. 1. 1.]]
|
||||
[[4. 4. 4. 4. 4. 4.]]
|
||||
[[7. 7. 7. 7. 7. 7.]]]
|
||||
>>> # case 4: Reduces a dimension along axis 2.
|
||||
>>> output = ops.reduce_min(x, 2)
|
||||
>>> output = ops.amin(x, 2)
|
||||
>>> print(output)
|
||||
[[[1.]
|
||||
[2.]
|
||||
|
@ -3882,10 +3882,10 @@ def reduce_min(x, axis, keep_dims=False):
|
|||
[8.]
|
||||
[9.]]]
|
||||
"""
|
||||
return P.ReduceMin(keep_dims)(x, axis)
|
||||
return _get_cache_prim(P.ReduceMin)(keep_dims)(x, axis)
|
||||
|
||||
|
||||
def reduce_max(x, axis, keep_dims=False):
|
||||
def amax(x, axis, keep_dims=False):
|
||||
r"""
|
||||
Reduces a dimension of a tensor by the maximum value in this dimension, by default. And also can
|
||||
reduce a dimension of `x` along the axis. Determine whether the dimensions of the output and input are the same by
|
||||
|
@ -3909,7 +3909,7 @@ def reduce_max(x, axis, keep_dims=False):
|
|||
|
||||
Examples:
|
||||
>>> x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
|
||||
>>> output = ops.reduce_max(x, 1, keep_dims=True)
|
||||
>>> output = ops.amax(x, 1, keep_dims=True)
|
||||
>>> result = output.shape
|
||||
>>> print(result)
|
||||
(3, 1, 5, 6)
|
||||
|
@ -3917,25 +3917,25 @@ def reduce_max(x, axis, keep_dims=False):
|
|||
>>> x = Tensor(np.array([[[1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]],
|
||||
... [[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]],
|
||||
... [[7, 7, 7, 7, 7, 7], [8, 8, 8, 8, 8, 8], [9, 9, 9, 9, 9, 9]]]), mindspore.float32)
|
||||
>>> output = ops.reduce_max(x)
|
||||
>>> output = ops.amax(x)
|
||||
>>> print(output)
|
||||
[[[9.]]]
|
||||
>>> print(output.shape)
|
||||
(1, 1, 1)
|
||||
>>> # case 2: Reduces a dimension along axis 0.
|
||||
>>> output = ops.reduce_max(x, 0)
|
||||
>>> output = ops.amax(x, 0)
|
||||
>>> print(output)
|
||||
[[[7. 7. 7. 7. 7. 7.]
|
||||
[8. 8. 8. 8. 8. 8.]
|
||||
[9. 9. 9. 9. 9. 9.]]]
|
||||
>>> # case 3: Reduces a dimension along axis 1.
|
||||
>>> output = ops.reduce_max(x, 1)
|
||||
>>> output = ops.amax(x, 1)
|
||||
>>> print(output)
|
||||
[[[3. 3. 3. 3. 3. 3.]]
|
||||
[[6. 6. 6. 6. 6. 6.]]
|
||||
[[9. 9. 9. 9. 9. 9.]]]
|
||||
>>> # case 4: Reduces a dimension along axis 2.
|
||||
>>> output = ops.reduce_max(x, 2)
|
||||
>>> output = ops.amax(x, 2)
|
||||
>>> print(output)
|
||||
[[[1.]
|
||||
[2.]
|
||||
|
@ -3947,10 +3947,10 @@ def reduce_max(x, axis, keep_dims=False):
|
|||
[8.]
|
||||
[9.]]]
|
||||
"""
|
||||
return P.ReduceMax(keep_dims)(x, axis)
|
||||
return _get_cache_prim(P.ReduceMax)(keep_dims)(x, axis)
|
||||
|
||||
|
||||
def reduce_mean(x, axis, keep_dims=False):
|
||||
def mean(x, axis, keep_dims=False):
|
||||
r"""
|
||||
Reduces a dimension of a tensor by averaging all elements in the dimension, by default. And also can reduce
|
||||
a dimension of `x` along the axis. Determine whether the dimensions of the output and input are the same by
|
||||
|
@ -3974,7 +3974,7 @@ def reduce_mean(x, axis, keep_dims=False):
|
|||
|
||||
Examples:
|
||||
>>> x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
|
||||
>>> output = ops.reduce_mean(x, 1, keep_dims=True)
|
||||
>>> output = ops.mean(x, 1, keep_dims=True)
|
||||
>>> result = output.shape
|
||||
>>> print(result)
|
||||
(3, 1, 5, 6)
|
||||
|
@ -3983,25 +3983,25 @@ def reduce_mean(x, axis, keep_dims=False):
|
|||
... [[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]],
|
||||
... [[6, 6, 6, 6, 6, 6], [8, 8, 8, 8, 8, 8], [10, 10, 10, 10, 10, 10]]]),
|
||||
... mindspore.float32)
|
||||
>>> output = ops.reduce_mean(x)
|
||||
>>> output = ops.mean(x)
|
||||
>>> print(output)
|
||||
[[[5.]]]
|
||||
>>> print(output.shape)
|
||||
(1, 1, 1)
|
||||
>>> # case 2: Reduces a dimension along the axis 0
|
||||
>>> output = ops.reduce_mean(x, 0)
|
||||
>>> output = ops.mean(x, 0)
|
||||
>>> print(output)
|
||||
[[[4. 4. 4. 4. 4. 4.]
|
||||
[5. 5. 5. 5. 5. 5.]
|
||||
[6. 6. 6. 6. 6. 6.]]]
|
||||
>>> # case 3: Reduces a dimension along the axis 1
|
||||
>>> output = ops.reduce_mean(x, 1)
|
||||
>>> output = ops.mean(x, 1)
|
||||
>>> print(output)
|
||||
[[[2. 2. 2. 2. 2. 2.]]
|
||||
[[5. 5. 5. 5. 5. 5.]]
|
||||
[[8. 8. 8. 8. 8. 8.]]]
|
||||
>>> # case 4: Reduces a dimension along the axis 2
|
||||
>>> output = ops.reduce_mean(x, 2)
|
||||
>>> output = ops.mean(x, 2)
|
||||
>>> print(output)
|
||||
[[[ 2.]
|
||||
[ 2.]
|
||||
|
@ -4014,10 +4014,10 @@ def reduce_mean(x, axis, keep_dims=False):
|
|||
[10.]]]
|
||||
"""
|
||||
|
||||
return P.ReduceMean(keep_dims)(x, axis)
|
||||
return _get_cache_prim(P.ReduceMean)(keep_dims)(x, axis)
|
||||
|
||||
|
||||
def reduce_prod(x, axis, keep_dims=False):
|
||||
def prod(x, axis, keep_dims=False):
|
||||
r"""
|
||||
Reduces a dimension of a tensor by multiplying all elements in the dimension, by default. And also can
|
||||
reduce a dimension of `x` along the axis. Determine whether the dimensions of the output and input are the same by
|
||||
|
@ -4041,7 +4041,7 @@ def reduce_prod(x, axis, keep_dims=False):
|
|||
|
||||
Examples:
|
||||
>>> x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
|
||||
>>> output = ops.reduce_prod(x, 1, keep_dims=True)
|
||||
>>> output = ops.prod(x, 1, keep_dims=True)
|
||||
>>> result = output.shape
|
||||
>>> print(result)
|
||||
(3, 1, 5, 6)
|
||||
|
@ -4049,25 +4049,25 @@ def reduce_prod(x, axis, keep_dims=False):
|
|||
>>> x = Tensor(np.array([[[1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]],
|
||||
... [[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]],
|
||||
... [[7, 7, 7, 7, 7, 7], [8, 8, 8, 8, 8, 8], [9, 9, 9, 9, 9, 9]]]), mindspore.float32)
|
||||
>>> output = ops.reduce_prod(x)
|
||||
>>> output = ops.prod(x)
|
||||
>>> print(output)
|
||||
[[[2.2833798e+33]]]
|
||||
>>> print(output.shape)
|
||||
(1, 1, 1)
|
||||
>>> # case 2: Reduces a dimension along axis 0.
|
||||
>>> output = ops.reduce_prod(x, 0)
|
||||
>>> output = ops.prod(x, 0)
|
||||
>>> print(output)
|
||||
[[[ 28. 28. 28. 28. 28. 28.]
|
||||
[ 80. 80. 80. 80. 80. 80.]
|
||||
[162. 162. 162. 162. 162. 162.]]]
|
||||
>>> # case 3: Reduces a dimension along axis 1.
|
||||
>>> output = ops.reduce_prod(x, 1)
|
||||
>>> output = ops.prod(x, 1)
|
||||
>>> print(output)
|
||||
[[[ 6. 6. 6. 6. 6. 6.]]
|
||||
[[120. 120. 120. 120. 120. 120.]]
|
||||
[[504. 504. 504. 504. 504. 504.]]]
|
||||
>>> # case 4: Reduces a dimension along axis 2.
|
||||
>>> output = ops.reduce_prod(x, 2)
|
||||
>>> output = ops.prod(x, 2)
|
||||
>>> print(output)
|
||||
[[[1.00000e+00]
|
||||
[6.40000e+01]
|
||||
|
@ -4079,7 +4079,7 @@ def reduce_prod(x, axis, keep_dims=False):
|
|||
[2.62144e+05]
|
||||
[5.31441e+05]]]
|
||||
"""
|
||||
return P.ReduceProd(keep_dims)(x, axis)
|
||||
return _get_cache_prim(P.ReduceProd)(keep_dims)(x, axis)
|
||||
|
||||
|
||||
def norm(input_x, axis, p=2, keep_dims=False, epsilon=1e-12):
|
||||
|
@ -4996,10 +4996,10 @@ __all__ = [
|
|||
'baddbmm',
|
||||
'cummin',
|
||||
'cummax',
|
||||
'reduce_min',
|
||||
'reduce_max',
|
||||
'reduce_mean',
|
||||
'reduce_prod',
|
||||
'amin',
|
||||
'amax',
|
||||
'mean',
|
||||
'prod',
|
||||
'all',
|
||||
'any',
|
||||
'sparse_segment_mean',
|
||||
|
|
|
@ -803,7 +803,7 @@ tensor_operator_registry.register('tan', P.Tan)
|
|||
tensor_operator_registry.register('cosh', P.Cosh)
|
||||
tensor_operator_registry.register('pow', P.Pow)
|
||||
tensor_operator_registry.register('mean', P.ReduceMean)
|
||||
tensor_operator_registry.register('reduce_prod', reduce_prod)
|
||||
tensor_operator_registry.register('prod', prod)
|
||||
tensor_operator_registry.register('round', P.Round)
|
||||
tensor_operator_registry.register('reshape', P.Reshape)
|
||||
tensor_operator_registry.register('xlogy', P.Xlogy)
|
||||
|
|
Loading…
Reference in New Issue