!19494 add ResizeBilinear ops for aicpu
Merge pull request !19494 from yanzhenxiang2020/add_resize_bilinear_aicpu
This commit is contained in:
commit
cb555f4b6e
|
@ -62,8 +62,10 @@ constexpr auto kMaskedSelect = "MaskedSelect";
|
|||
constexpr auto kMaskedSelectGrad = "MaskedSelectGrad";
|
||||
constexpr auto kDynamicStitch = "DynamicStitch";
|
||||
constexpr auto kSearchSorted = "SearchSorted";
|
||||
const std::set<std::string> kCustAiCpuKernelOps{kIdentity, kMaskedSelect, kMaskedSelectGrad, kDynamicStitch,
|
||||
kSearchSorted};
|
||||
constexpr auto kResizeBilinear = "ResizeBilinear";
|
||||
constexpr auto kResizeBilinearGrad = "ResizeBilinearGrad";
|
||||
const std::set<std::string> kCustAiCpuKernelOps{kIdentity, kMaskedSelect, kMaskedSelectGrad, kDynamicStitch,
|
||||
kSearchSorted, kResizeBilinear, kResizeBilinearGrad};
|
||||
const std::set<std::string> kCacheKernelOps{kUpdateCache, kCacheSwapTable, kSubAndFilter,
|
||||
kPadAndShift, kDropout3D, kDropout2D};
|
||||
|
||||
|
|
|
@ -77,3 +77,5 @@ from .stack_push_pop import _stack_push_aicpu
|
|||
from .stack_push_pop import _stack_pop_aicpu
|
||||
from .stack_push_pop import _stack_destroy_aicpu
|
||||
from .ctc_greedy_decoder import _ctc_greedy_decoder_aicpu
|
||||
from .resize_bilinear import _resize_bilinear_aicpu
|
||||
from .resize_bilinear_grad import _resize_bilinear_grad_aicpu
|
||||
|
|
|
@ -0,0 +1,32 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""ResizeBilinear op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
resize_bilinear_op_info = AiCPURegOp("ResizeBilinear") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.input(0, "input", "required") \
|
||||
.output(1, "output", "required") \
|
||||
.attr("align_corners", "bool") \
|
||||
.dtype_format(DataType.F16_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(resize_bilinear_op_info)
|
||||
def _resize_bilinear_aicpu():
|
||||
"""ResizeBilinear AiCPU register"""
|
||||
return
|
|
@ -0,0 +1,33 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""ResizeBilinearGrad op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
resize_bilinear_grad_op_info = AiCPURegOp("ResizeBilinearGrad") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.input(0, "output_grad", "required") \
|
||||
.input(0, "input", "required") \
|
||||
.output(1, "input_grad", "required") \
|
||||
.attr("align_corners", "bool") \
|
||||
.dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(resize_bilinear_grad_op_info)
|
||||
def _resize_bilinear_grad_aicpu():
|
||||
"""ResizeBilinearGrad AiCPU register"""
|
||||
return
|
|
@ -0,0 +1,69 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import mindspore
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.resize = P.ResizeBilinear((2, 4), False)
|
||||
|
||||
def construct(self, x):
|
||||
return self.resize(x)
|
||||
|
||||
|
||||
class Grad(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
self.grad = GradOperation(get_all=True, sens_param=True)
|
||||
self.network = network
|
||||
self.network.set_train()
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.grad(self.network)(x, y)
|
||||
|
||||
|
||||
def net_float16():
|
||||
tensor = Tensor([[[[1, 2, 3, 4, 5], [2, 4, 6, 4, 9]]]], mindspore.float16)
|
||||
net = Net()
|
||||
output = net(tensor)
|
||||
return output
|
||||
|
||||
|
||||
def test_net_grad():
|
||||
net = Grad(Net())
|
||||
x = Tensor([[[[1, 2, 3, 4, 5], [2, 4, 6, 4, 9]]]], mindspore.float16)
|
||||
y = net_float16()
|
||||
dy = Tensor([[[[1, 2, 3, 4], [2, 4, 6, 4]]]], mindspore.float16)
|
||||
dy = P.Cast()(dy, mindspore.float32)
|
||||
dx = net(x, dy)
|
||||
print("forward input: ", x)
|
||||
print("forward output: ", y)
|
||||
print("backward input: ", dy)
|
||||
print("backward output: ", dx)
|
||||
|
||||
y_expect = np.array([[[[1.0, 2.25, 3.5, 4.75],
|
||||
[2.0, 4.5, 5.0, 7.75]]]])
|
||||
dx_expect = np.array([[[[1.0, 1.5, 2.0, 2.5, 3.0],
|
||||
[2.0, 3.0, 4.0, 4.0, 3.0]]]])
|
||||
assert np.array_equal(y_expect, y.asnumpy())
|
||||
assert np.array_equal(dx_expect, dx[0].asnumpy())
|
Loading…
Reference in New Issue