added SGD operation in CPU
This commit is contained in:
parent
b6605f5939
commit
cb54c6efae
|
@ -0,0 +1,88 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "backend/kernel_compiler/cpu/sgd_cpu_kernel.h"
|
||||||
|
|
||||||
|
#include <thread>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace kernel {
|
||||||
|
namespace {
|
||||||
|
constexpr size_t kInputSize = 6;
|
||||||
|
constexpr size_t kOutputSize = 1;
|
||||||
|
} // namespace
|
||||||
|
template <typename T>
|
||||||
|
void SGDCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
|
||||||
|
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||||
|
dampening_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "dampening");
|
||||||
|
weight_decay_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "weight_decay");
|
||||||
|
nesterov_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, "nesterov");
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
void SGDCPUKernel<T>::CheckParam(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) {
|
||||||
|
// inputs: params, grad, lr, accum, momentum, stat
|
||||||
|
if (inputs.size() != kInputSize) {
|
||||||
|
MS_LOG(EXCEPTION) << "Input number is " << inputs.size() << ", but SGD needs 6 inputs.";
|
||||||
|
}
|
||||||
|
|
||||||
|
// output: param
|
||||||
|
if (outputs.size() != kOutputSize) {
|
||||||
|
MS_LOG(EXCEPTION) << "Output number is " << outputs.size() << ", but SGD needs 1 outputs.";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
bool SGDCPUKernel<T>::Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> & /*workspace*/,
|
||||||
|
const std::vector<AddressPtr> &outputs) {
|
||||||
|
CheckParam(inputs, outputs);
|
||||||
|
|
||||||
|
auto param = reinterpret_cast<T *>(inputs[0]->addr);
|
||||||
|
auto grad = reinterpret_cast<T *>(inputs[1]->addr);
|
||||||
|
auto lr = reinterpret_cast<T *>(inputs[2]->addr);
|
||||||
|
auto accum = reinterpret_cast<T *>(inputs[3]->addr);
|
||||||
|
auto momentum = reinterpret_cast<T *>(inputs[4]->addr);
|
||||||
|
auto stat = reinterpret_cast<T *>(inputs[5]->addr);
|
||||||
|
size_t elem_num = inputs[0]->size / sizeof(float);
|
||||||
|
|
||||||
|
auto task = [&](size_t start, size_t end) {
|
||||||
|
for (size_t i = start; i < end; i++) {
|
||||||
|
T grad_new = grad[i];
|
||||||
|
if (weight_decay_ > 0) {
|
||||||
|
grad_new += param[i] * static_cast<T>(weight_decay_);
|
||||||
|
}
|
||||||
|
if (momentum[0] > static_cast<T>(0)) {
|
||||||
|
if (stat[i] > static_cast<T>(0)) {
|
||||||
|
accum[i] = grad_new;
|
||||||
|
stat[i] = static_cast<T>(0);
|
||||||
|
} else {
|
||||||
|
accum[i] = accum[i] * momentum[0] + static_cast<T>(1.0 - dampening_) * grad_new;
|
||||||
|
}
|
||||||
|
if (nesterov_) {
|
||||||
|
grad_new += accum[i] * momentum[0];
|
||||||
|
} else {
|
||||||
|
grad_new = accum[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
param[i] -= lr[0] * grad_new;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
CPUKernelUtils::ParallelFor(task, elem_num);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
} // namespace kernel
|
||||||
|
} // namespace mindspore
|
|
@ -0,0 +1,67 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SGD_CPU_KERNEL_H_
|
||||||
|
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SGD_CPU_KERNEL_H_
|
||||||
|
|
||||||
|
#include <thread>
|
||||||
|
#include <vector>
|
||||||
|
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||||
|
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace kernel {
|
||||||
|
template <typename T>
|
||||||
|
class SGDCPUKernel : public CPUKernel {
|
||||||
|
public:
|
||||||
|
SGDCPUKernel() = default;
|
||||||
|
~SGDCPUKernel() override = default;
|
||||||
|
|
||||||
|
void InitKernel(const CNodePtr &kernel_node) override;
|
||||||
|
|
||||||
|
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> & /*workspace*/,
|
||||||
|
const std::vector<AddressPtr> &outputs) override;
|
||||||
|
|
||||||
|
private:
|
||||||
|
static void CheckParam(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
|
||||||
|
float dampening_;
|
||||||
|
float weight_decay_;
|
||||||
|
bool nesterov_{true};
|
||||||
|
};
|
||||||
|
|
||||||
|
MS_REG_CPU_KERNEL_T(SGD,
|
||||||
|
KernelAttr()
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddOutputAttr(kNumberTypeFloat32),
|
||||||
|
SGDCPUKernel, float);
|
||||||
|
|
||||||
|
MS_REG_CPU_KERNEL_T(SGD,
|
||||||
|
KernelAttr()
|
||||||
|
.AddInputAttr(kNumberTypeFloat16)
|
||||||
|
.AddInputAttr(kNumberTypeFloat16)
|
||||||
|
.AddInputAttr(kNumberTypeFloat16)
|
||||||
|
.AddInputAttr(kNumberTypeFloat16)
|
||||||
|
.AddInputAttr(kNumberTypeFloat16)
|
||||||
|
.AddInputAttr(kNumberTypeFloat16)
|
||||||
|
.AddOutputAttr(kNumberTypeFloat16),
|
||||||
|
SGDCPUKernel, float16);
|
||||||
|
} // namespace kernel
|
||||||
|
} // namespace mindspore
|
||||||
|
#endif
|
|
@ -2704,7 +2704,7 @@ class SGD(PrimitiveWithCheck):
|
||||||
float16 nor float32.
|
float16 nor float32.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend`` ``GPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> sgd = ops.SGD()
|
>>> sgd = ops.SGD()
|
||||||
|
|
|
@ -0,0 +1,72 @@
|
||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
import mindspore.context as context
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.nn import Dense
|
||||||
|
from mindspore.nn import TrainOneStepCell, WithLossCell
|
||||||
|
from mindspore.nn.optim import SGD
|
||||||
|
from mindspore.ops import operations as P
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||||
|
|
||||||
|
class NetSGD(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(NetSGD, self).__init__()
|
||||||
|
self.batch_size = 1
|
||||||
|
self.reshape = P.Reshape()
|
||||||
|
weight = Tensor(np.ones([10, 16]).astype(np.float32) * 0.01)
|
||||||
|
self.fc1 = Dense(16, 10, weight_init=weight)
|
||||||
|
|
||||||
|
def construct(self, input_x):
|
||||||
|
output = self.reshape(input_x, (self.batch_size, -1))
|
||||||
|
output = self.fc1(output)
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_cpu
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_SGD():
|
||||||
|
epoch = 3
|
||||||
|
net = NetSGD()
|
||||||
|
learning_rate = 0.1
|
||||||
|
momentum = 0.9
|
||||||
|
dampening = 0.0
|
||||||
|
weight_decay = 0.0
|
||||||
|
nesterov = True
|
||||||
|
loss_scale = 1.0
|
||||||
|
|
||||||
|
optimizer = SGD(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum, dampening,
|
||||||
|
weight_decay, nesterov, loss_scale)
|
||||||
|
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||||
|
net_with_criterion = WithLossCell(net, criterion)
|
||||||
|
train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
|
||||||
|
train_network.set_train()
|
||||||
|
losses = []
|
||||||
|
for _ in range(epoch):
|
||||||
|
data = Tensor(np.arange(0, 16).reshape(1, 1, 4, 4).astype(np.float32) * 0.01)
|
||||||
|
label = Tensor(np.array([0]).astype(np.int32))
|
||||||
|
loss = train_network(data, label)
|
||||||
|
losses.append(loss.asnumpy())
|
||||||
|
|
||||||
|
last_loss = 100.0
|
||||||
|
for loss in losses:
|
||||||
|
assert last_loss > loss
|
||||||
|
last_loss = loss
|
Loading…
Reference in New Issue