added SGD operation in CPU
This commit is contained in:
parent
b6605f5939
commit
cb54c6efae
|
@ -0,0 +1,88 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/cpu/sgd_cpu_kernel.h"
|
||||
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
namespace {
|
||||
constexpr size_t kInputSize = 6;
|
||||
constexpr size_t kOutputSize = 1;
|
||||
} // namespace
|
||||
template <typename T>
|
||||
void SGDCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||
dampening_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "dampening");
|
||||
weight_decay_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "weight_decay");
|
||||
nesterov_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, "nesterov");
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void SGDCPUKernel<T>::CheckParam(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) {
|
||||
// inputs: params, grad, lr, accum, momentum, stat
|
||||
if (inputs.size() != kInputSize) {
|
||||
MS_LOG(EXCEPTION) << "Input number is " << inputs.size() << ", but SGD needs 6 inputs.";
|
||||
}
|
||||
|
||||
// output: param
|
||||
if (outputs.size() != kOutputSize) {
|
||||
MS_LOG(EXCEPTION) << "Output number is " << outputs.size() << ", but SGD needs 1 outputs.";
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool SGDCPUKernel<T>::Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> & /*workspace*/,
|
||||
const std::vector<AddressPtr> &outputs) {
|
||||
CheckParam(inputs, outputs);
|
||||
|
||||
auto param = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
auto grad = reinterpret_cast<T *>(inputs[1]->addr);
|
||||
auto lr = reinterpret_cast<T *>(inputs[2]->addr);
|
||||
auto accum = reinterpret_cast<T *>(inputs[3]->addr);
|
||||
auto momentum = reinterpret_cast<T *>(inputs[4]->addr);
|
||||
auto stat = reinterpret_cast<T *>(inputs[5]->addr);
|
||||
size_t elem_num = inputs[0]->size / sizeof(float);
|
||||
|
||||
auto task = [&](size_t start, size_t end) {
|
||||
for (size_t i = start; i < end; i++) {
|
||||
T grad_new = grad[i];
|
||||
if (weight_decay_ > 0) {
|
||||
grad_new += param[i] * static_cast<T>(weight_decay_);
|
||||
}
|
||||
if (momentum[0] > static_cast<T>(0)) {
|
||||
if (stat[i] > static_cast<T>(0)) {
|
||||
accum[i] = grad_new;
|
||||
stat[i] = static_cast<T>(0);
|
||||
} else {
|
||||
accum[i] = accum[i] * momentum[0] + static_cast<T>(1.0 - dampening_) * grad_new;
|
||||
}
|
||||
if (nesterov_) {
|
||||
grad_new += accum[i] * momentum[0];
|
||||
} else {
|
||||
grad_new = accum[i];
|
||||
}
|
||||
}
|
||||
param[i] -= lr[0] * grad_new;
|
||||
}
|
||||
};
|
||||
CPUKernelUtils::ParallelFor(task, elem_num);
|
||||
return true;
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,67 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SGD_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SGD_CPU_KERNEL_H_
|
||||
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class SGDCPUKernel : public CPUKernel {
|
||||
public:
|
||||
SGDCPUKernel() = default;
|
||||
~SGDCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> & /*workspace*/,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
private:
|
||||
static void CheckParam(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
|
||||
float dampening_;
|
||||
float weight_decay_;
|
||||
bool nesterov_{true};
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL_T(SGD,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
SGDCPUKernel, float);
|
||||
|
||||
MS_REG_CPU_KERNEL_T(SGD,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
SGDCPUKernel, float16);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif
|
|
@ -2704,7 +2704,7 @@ class SGD(PrimitiveWithCheck):
|
|||
float16 nor float32.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU``
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> sgd = ops.SGD()
|
||||
|
|
|
@ -0,0 +1,72 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn import Dense
|
||||
from mindspore.nn import TrainOneStepCell, WithLossCell
|
||||
from mindspore.nn.optim import SGD
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
class NetSGD(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetSGD, self).__init__()
|
||||
self.batch_size = 1
|
||||
self.reshape = P.Reshape()
|
||||
weight = Tensor(np.ones([10, 16]).astype(np.float32) * 0.01)
|
||||
self.fc1 = Dense(16, 10, weight_init=weight)
|
||||
|
||||
def construct(self, input_x):
|
||||
output = self.reshape(input_x, (self.batch_size, -1))
|
||||
output = self.fc1(output)
|
||||
return output
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_SGD():
|
||||
epoch = 3
|
||||
net = NetSGD()
|
||||
learning_rate = 0.1
|
||||
momentum = 0.9
|
||||
dampening = 0.0
|
||||
weight_decay = 0.0
|
||||
nesterov = True
|
||||
loss_scale = 1.0
|
||||
|
||||
optimizer = SGD(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum, dampening,
|
||||
weight_decay, nesterov, loss_scale)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
net_with_criterion = WithLossCell(net, criterion)
|
||||
train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
|
||||
train_network.set_train()
|
||||
losses = []
|
||||
for _ in range(epoch):
|
||||
data = Tensor(np.arange(0, 16).reshape(1, 1, 4, 4).astype(np.float32) * 0.01)
|
||||
label = Tensor(np.array([0]).astype(np.int32))
|
||||
loss = train_network(data, label)
|
||||
losses.append(loss.asnumpy())
|
||||
|
||||
last_loss = 100.0
|
||||
for loss in losses:
|
||||
assert last_loss > loss
|
||||
last_loss = loss
|
Loading…
Reference in New Issue