diff --git a/model_zoo/research/cv/FaceQualityAssessment/train.py b/model_zoo/research/cv/FaceQualityAssessment/train.py index 47db3843bb1..0d6a3db4360 100644 --- a/model_zoo/research/cv/FaceQualityAssessment/train.py +++ b/model_zoo/research/cv/FaceQualityAssessment/train.py @@ -102,7 +102,7 @@ def main(args): else: param_dict_new[key] = values load_param_into_net(network, param_dict_new) - cfg.logger.info('load model %s success' % str(cfg.pretrained)) + cfg.logger.info('load model %s success.' % cfg.pretrained) # optimizer and lr scheduler lr = warmup_step(cfg, gamma=0.9) diff --git a/model_zoo/research/cv/FaceRecognition/eval.py b/model_zoo/research/cv/FaceRecognition/eval.py index 003da916b2a..b13a7dd5d0f 100644 --- a/model_zoo/research/cv/FaceRecognition/eval.py +++ b/model_zoo/research/cv/FaceRecognition/eval.py @@ -328,6 +328,6 @@ if __name__ == '__main__': log_path = os.path.join(arg.ckpt_path, 'logs') arg.logger = get_logger(log_path, arg.local_rank) - arg.logger.info('Config\n\n%s\n' % str(pformat(arg))) + arg.logger.info('Config\n\n{}\n'.format(pformat(arg))) main(arg) diff --git a/model_zoo/research/cv/FaceRecognitionForTracking/train.py b/model_zoo/research/cv/FaceRecognitionForTracking/train.py index 39f0af39511..273d9e01b55 100644 --- a/model_zoo/research/cv/FaceRecognitionForTracking/train.py +++ b/model_zoo/research/cv/FaceRecognitionForTracking/train.py @@ -44,8 +44,8 @@ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs random.seed(1) np.random.seed(1) - -def main(): +def init_argument(): + """init config argument.""" parser = argparse.ArgumentParser(description='Cifar10 classification') parser.add_argument('--is_distributed', type=int, default=0, help='if multi device') parser.add_argument('--data_dir', type=str, default='', help='image label list file, e.g. /home/label.txt') @@ -78,23 +78,25 @@ def main(): # logger cfg.outputs_dir = os.path.join(cfg.ckpt_path, datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S')) cfg.logger = get_logger(cfg.outputs_dir, cfg.local_rank) - loss_meter = AverageMeter('loss') # Show cfg cfg.logger.save_args(cfg) + return cfg +def main(): + cfg = init_argument() + loss_meter = AverageMeter('loss') # dataloader cfg.logger.info('start create dataloader') de_dataset, steps_per_epoch, class_num = get_de_dataset(cfg) cfg.steps_per_epoch = steps_per_epoch - cfg.logger.info('step per epoch: ' + str(cfg.steps_per_epoch)) + cfg.logger.info('step per epoch: %d' % cfg.steps_per_epoch) de_dataloader = de_dataset.create_tuple_iterator() - - cfg.logger.info('class num original: ' + str(class_num)) + cfg.logger.info('class num original: %d' % class_num) if class_num % 16 != 0: class_num = (class_num // 16 + 1) * 16 cfg.class_num = class_num - cfg.logger.info('change the class num to :' + str(cfg.class_num)) + cfg.logger.info('change the class num to: %d' % cfg.class_num) cfg.logger.info('end create dataloader') # backbone and loss @@ -117,7 +119,7 @@ def main(): else: param_dict_new[key] = values load_param_into_net(network, param_dict_new) - cfg.logger.info('load model {} success'.format(cfg.pretrained)) + cfg.logger.info('load model %s success' % cfg.pretrained) # mixed precision training network.add_flags_recursive(fp16=True)