Modify api documentation based on view comments
This commit is contained in:
parent
d4b4fa3d2d
commit
c910b72366
|
@ -1,26 +1,20 @@
|
|||
mindspore.profiler
|
||||
========================
|
||||
|
||||
profiler模块简介。
|
||||
|
||||
本模块提供Python API,用于启用MindSpore神经网络性能数据的分析。
|
||||
用户可以通过 ``import mindspore.profiler.Profiler`` 并初始化Profiler对象以开始分析,并使用 `Profiler.analyse()` 停止收集和分析。
|
||||
用户可以通过导入 `mindspore.profiler.Profiler` 然后初始化Profiler对象以开始分析,使用 `Profiler.analyse()` 停止收集和分析。
|
||||
用户可通过Mindinsight工具可视化分析结果。
|
||||
目前,Profiler支持AICore算子、AICpu算子、HostCpu算子、内存、设备通信、集群等数据的分析。
|
||||
目前,Profiler支持AICORE算子、AICPU算子、HostCPU算子、内存、设备通信、集群等数据的分析。
|
||||
|
||||
.. py:class:: mindspore.profiler.Profiler(**kwargs)
|
||||
|
||||
性能采集API。
|
||||
|
||||
此API能够让MindSpore用户采集神经网络的性能。
|
||||
Profiler支持Ascend和GPU,两者的使用方式相同。
|
||||
MindSpore用户能够通过该类对神经网络的性能进行采集。
|
||||
|
||||
**参数:**
|
||||
|
||||
- **output_path** (str) – 表示输出数据的路径。
|
||||
- **profile_communication** (bool) – (仅限Ascend)表示是否在多设备训练中收集通信性能数据。当值为True时,收集这些数据。默认值为False。在单台设备训练中,该参数的设置无效。
|
||||
- **profile_memory** (bool) – (仅限Ascend)表示是否收集Tensor内存数据。当值为True时,收集这些数据。默认值为False。
|
||||
- **start_profile** (bool) – 该参数控制是否在Profiler初始化的时候开启采集数据。默认值为True。
|
||||
- **output_path** (str, 可选) – 表示输出数据的路径。默认值:"./data"。
|
||||
- **profile_communication** (bool, 可选) – (仅限Ascend)表示是否在多设备训练中收集通信性能数据。当值为True时,收集这些数据。在单台设备训练中,该参数的设置无效。默认值:False。
|
||||
- **profile_memory** (bool, 可选) – (仅限Ascend)表示是否收集Tensor内存数据。当值为True时,收集这些数据。默认值:False。
|
||||
- **start_profile** (bool, 可选) – 该参数控制是否在Profiler初始化的时候开启数据采集。默认值:True。
|
||||
|
||||
**异常:**
|
||||
|
||||
|
@ -28,7 +22,7 @@ profiler模块简介。
|
|||
|
||||
.. py:method:: analyse()
|
||||
|
||||
收集和分析训练后或训练期间调用的性能数据。样例如上所示。
|
||||
收集和分析训练的性能数据,支持在训练中和训练后调用。样例如上所示。
|
||||
|
||||
.. py:method:: start()
|
||||
|
||||
|
|
|
@ -13,13 +13,11 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
Profiler Module Introduction.
|
||||
|
||||
This module provides Python APIs to enable the profiling of MindSpore neural networks.
|
||||
Users can import the mindspore.profiler.Profiler, initialize the Profiler object to start profiling,
|
||||
and use Profiler.analyse() to stop profiling and analyse the results.
|
||||
Users can visualize the results using the MindInsight tool.
|
||||
Now, Profiler supports AICore operator, AICpu operator, HostCpu operator, memory,
|
||||
Now, Profiler supports AICORE operator, AICPU operator, HostCPU operator, memory,
|
||||
correspondence, cluster, etc data analysis.
|
||||
"""
|
||||
from mindspore.profiler.profiling import Profiler
|
||||
|
|
|
@ -55,24 +55,25 @@ def _environment_check():
|
|||
|
||||
class Profiler:
|
||||
"""
|
||||
Performance profiling API.
|
||||
|
||||
This API enables MindSpore users to profile the performance of neural network.
|
||||
Profiler supports Ascend and GPU, both of them are used in the same way.
|
||||
MindSpore users can use this class to collect the performance of neural networks.
|
||||
|
||||
Args:
|
||||
output_path (str): Output data path.
|
||||
profile_communication (bool): (Ascend only) Whether to collect communication
|
||||
performance data in a multi devices training, collect when True. Default is False.
|
||||
Setting this parameter has no effect during single device training.
|
||||
profile_memory (bool): Whether to collect tensor memory data, collect when True. Default is False.
|
||||
start_profile (bool): The start_profile parameter controls whether to enable or disable performance data
|
||||
collection based on conditions. The default value is True.
|
||||
output_path (str, optional): Output data path. Default: "./data".
|
||||
profile_communication (bool, optional): (Ascend only) Whether to collect communication performance data in
|
||||
a multi devices training,collect when True. Setting this parameter has no effect during single device
|
||||
training. Default: False.
|
||||
profile_memory (bool, optional): (Ascend only) Whether to collect tensor memory data, collect when True.
|
||||
Default: False.
|
||||
start_profile (bool, optional): The start_profile parameter controls whether to enable or disable performance
|
||||
data collection based on conditions. Default: True.
|
||||
|
||||
Raises:
|
||||
RuntimeError: When the version of CANN does not match the version of MindSpore,
|
||||
MindSpore cannot parse the generated ascend_job_id directory structure.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU``
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import nn, context
|
||||
|
@ -295,7 +296,7 @@ class Profiler:
|
|||
|
||||
def analyse(self):
|
||||
"""
|
||||
Collect and analyse performance data, called after training or during training. The example shows above.
|
||||
Collect and analyze training performance data, support calls during and after training. The example shows above.
|
||||
"""
|
||||
if Profiler._has_analysed:
|
||||
msg = "Do not analyze twice in the profiler."
|
||||
|
|
Loading…
Reference in New Issue