!26963 [MS][LITE][develop] add c benchmark and demo
Merge pull request !26963 from sunsuodong/c_benchmark_demo
This commit is contained in:
commit
c7e1630b41
|
@ -62,3 +62,5 @@
|
|||
"mindspore/mindspore/lite/examples/runtime_gpu_extend/src/cl" "legal/copyright"
|
||||
"mindspore/mindspore/lite/examples/runtime_gpu_extend/src/cl" "readability/casting"
|
||||
"mindspore/mindspore/lite/examples/runtime_gpu_extend/src/cl" "readability/fn_size"
|
||||
"mindspore/mindspore/lite/examples/quick_start_c/main.c" "readability/casting"
|
||||
"mindspore/mindspore/lite/examples/quick_start_c/main.c" "runtime/threadsafe_fn"
|
|
@ -0,0 +1,30 @@
|
|||
cmake_minimum_required(VERSION 3.14)
|
||||
project(QuickStartC)
|
||||
|
||||
if(CMAKE_C_COMPILER_ID STREQUAL "GNU" AND CMAKE_C_COMPILER_VERSION VERSION_LESS 7.3.0)
|
||||
message(FATAL_ERROR "GCC version ${CMAKE_C_COMPILER_VERSION} must not be less than 7.3.0")
|
||||
endif()
|
||||
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
|
||||
link_directories(${CMAKE_CURRENT_SOURCE_DIR}/lib)
|
||||
|
||||
add_executable(mindspore_quick_start_c main.c)
|
||||
|
||||
target_link_libraries(
|
||||
mindspore_quick_start_c
|
||||
-Wl,--whole-archive mindspore-lite -Wl,--no-whole-archive
|
||||
pthread
|
||||
)
|
||||
|
||||
if(WIN32)
|
||||
target_link_libraries(
|
||||
mindspore_quick_start_c
|
||||
ssp
|
||||
)
|
||||
else()
|
||||
target_link_libraries(
|
||||
mindspore_quick_start_c
|
||||
dl
|
||||
)
|
||||
endif()
|
|
@ -0,0 +1,30 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
set -e
|
||||
BASEPATH=$(cd "$(dirname $0)"; pwd)
|
||||
|
||||
MODEL_DOWNLOAD_URL="https://download.mindspore.cn/model_zoo/official/lite/quick_start/mobilenetv2.ms"
|
||||
|
||||
if [ ! -e ${BASEPATH}/model/mobilenetv2.ms ]; then
|
||||
mkdir -p model
|
||||
wget -c -O ${BASEPATH}/model/mobilenetv2.ms --no-check-certificate ${MODEL_DOWNLOAD_URL}
|
||||
fi
|
||||
|
||||
mkdir -p build
|
||||
cd build
|
||||
cmake ..
|
||||
make
|
|
@ -0,0 +1,121 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include "include/c_api/model_c.h"
|
||||
|
||||
int GenerateInputDataWithRandom(MSTensorHandleArray inputs) {
|
||||
for (size_t i = 0; i < inputs.handle_num; ++i) {
|
||||
float *input_data = (float *)MSTensorGetMutableData(inputs.handle_list[i]);
|
||||
if (input_data == NULL) {
|
||||
printf("MSTensorGetMutableData failed.\n");
|
||||
return kMSStatusLiteError;
|
||||
}
|
||||
int64_t num = MSTensorGetElementNum(inputs.handle_list[i]);
|
||||
const int divisor = 10;
|
||||
for (size_t j = 0; j < num; j++) {
|
||||
input_data[j] = (float)(rand() % divisor) / divisor; // 0--0.9f
|
||||
}
|
||||
}
|
||||
return kMSStatusSuccess;
|
||||
}
|
||||
|
||||
int QuickStart(int argc, const char **argv) {
|
||||
if (argc < 2) {
|
||||
printf("Model file must be provided.\n");
|
||||
return kMSStatusLiteError;
|
||||
}
|
||||
|
||||
// Create and init context, add CPU device info
|
||||
MSContextHandle context = MSContextCreate();
|
||||
if (context == NULL) {
|
||||
printf("MSContextCreate failed.\n");
|
||||
return kMSStatusLiteError;
|
||||
}
|
||||
const int thread_num = 2;
|
||||
MSContextSetThreadNum(context, thread_num);
|
||||
MSContextSetThreadAffinityMode(context, 1);
|
||||
|
||||
MSDeviceInfoHandle cpu_device_info = MSDeviceInfoCreate(kMSDeviceTypeCPU);
|
||||
if (cpu_device_info == NULL) {
|
||||
printf("MSDeviceInfoCreate failed.\n");
|
||||
MSContextDestroy(&context);
|
||||
return kMSStatusLiteError;
|
||||
}
|
||||
MSDeviceInfoSetEnableFP16(cpu_device_info, false);
|
||||
MSContextAddDeviceInfo(context, cpu_device_info);
|
||||
|
||||
// Create model
|
||||
MSModelHandle model = MSModelCreate();
|
||||
if (model == NULL) {
|
||||
printf("MSModelCreate failed.\n");
|
||||
MSContextDestroy(&context);
|
||||
return kMSStatusLiteError;
|
||||
}
|
||||
|
||||
// Build model
|
||||
int ret = MSModelBuildFromFile(model, argv[1], kMSModelTypeMindIR, context);
|
||||
if (ret != kMSStatusSuccess) {
|
||||
printf("MSModelBuildFromFile failed, ret: %d.\n", ret);
|
||||
MSModelDestroy(&model);
|
||||
return ret;
|
||||
}
|
||||
|
||||
// Get Inputs
|
||||
MSTensorHandleArray inputs = MSModelGetInputs(model);
|
||||
if (inputs.handle_list == NULL) {
|
||||
printf("MSModelGetInputs failed, ret: %d.\n", ret);
|
||||
MSModelDestroy(&model);
|
||||
return ret;
|
||||
}
|
||||
|
||||
// Generate random data as input data.
|
||||
ret = GenerateInputDataWithRandom(inputs);
|
||||
if (ret != kMSStatusSuccess) {
|
||||
printf("GenerateInputDataWithRandom failed, ret: %d.\n", ret);
|
||||
MSModelDestroy(&model);
|
||||
return ret;
|
||||
}
|
||||
|
||||
// Model Predict
|
||||
MSTensorHandleArray outputs;
|
||||
ret = MSModelPredict(model, inputs, &outputs, NULL, NULL);
|
||||
if (ret != kMSStatusSuccess) {
|
||||
printf("MSModelPredict failed, ret: %d.\n", ret);
|
||||
MSModelDestroy(&model);
|
||||
return ret;
|
||||
}
|
||||
|
||||
// Print Output Tensor Data.
|
||||
for (size_t i = 0; i < inputs.handle_num; ++i) {
|
||||
MSTensorHandle tensor = inputs.handle_list[i];
|
||||
int64_t element_num = MSTensorGetElementNum(tensor);
|
||||
printf("Tensor name: %s, elements num: %ld.\n", MSTensorGetName(tensor), element_num);
|
||||
const float *data = (const float *)MSTensorGetData(tensor);
|
||||
printf("output data is:\n");
|
||||
const int max_print_num = 50;
|
||||
for (int j = 0; j < element_num && j <= max_print_num; ++j) {
|
||||
printf("%f ", data[i]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
// Delete model.
|
||||
MSModelDestroy(&model);
|
||||
return kMSStatusSuccess;
|
||||
}
|
||||
|
||||
int main(int argc, const char **argv) { return QuickStart(argc, argv); }
|
|
@ -106,7 +106,7 @@ int LiteModel::ConvertAttrToTensors() {
|
|||
|
||||
void LiteModel::Free() {
|
||||
if (this->buf != nullptr) {
|
||||
free(this->buf);
|
||||
delete[](this->buf);
|
||||
this->buf = nullptr;
|
||||
}
|
||||
auto nodes_size = this->all_nodes_.size();
|
||||
|
@ -397,7 +397,7 @@ int InitModelBuffer(LiteModel *model, const char *model_buf, size_t size, bool t
|
|||
MS_LOG(ERROR) << "Input model buffer size invalid, require (0, 2GB].";
|
||||
return RET_ERROR;
|
||||
}
|
||||
model->buf = reinterpret_cast<char *>(malloc(size));
|
||||
model->buf = new char[size];
|
||||
if (model->buf == nullptr) {
|
||||
MS_LOG(ERROR) << "new inner model buf fail!";
|
||||
return RET_NULL_PTR;
|
||||
|
|
|
@ -114,7 +114,7 @@ int NormalizeCPUKernel::Run() {
|
|||
auto chars = all_string_pack[i];
|
||||
std::string str(chars.data, chars.len);
|
||||
std::string result = Normalize(str);
|
||||
int str_length = result.size();
|
||||
size_t str_length = result.size();
|
||||
|
||||
char *normalized_str = nullptr;
|
||||
normalized_str = reinterpret_cast<char *>(ms_context_->allocator->Malloc(sizeof(char) * str_length));
|
||||
|
@ -126,7 +126,7 @@ int NormalizeCPUKernel::Run() {
|
|||
normalized_strs[i] = normalized_str;
|
||||
|
||||
memcpy(normalized_str, result.data(), str_length);
|
||||
out_string_pack.push_back({str_length, normalized_str});
|
||||
out_string_pack.push_back({static_cast<int>(str_length), normalized_str});
|
||||
}
|
||||
if (string_num == 0) {
|
||||
out_string_pack.push_back({1, ""});
|
||||
|
|
|
@ -80,7 +80,7 @@ int SkipGramCPUKernel::Run() {
|
|||
std::vector<int> stack(skip_gram_parameter_->ngram_size, 0);
|
||||
|
||||
int index = 1;
|
||||
int size = words.size();
|
||||
int size = static_cast<int>(words.size());
|
||||
while (index >= 0) {
|
||||
if (index < skip_gram_parameter_->ngram_size && stack.at(index) + 1 < size &&
|
||||
(index == 0 || stack.at(index) - stack.at(index - 1) <= skip_gram_parameter_->max_skip_size)) {
|
||||
|
|
|
@ -98,6 +98,7 @@ if(MSLITE_ENABLE_CONVERTER)
|
|||
${LITE_DIR}/tools/benchmark/run_benchmark.cc
|
||||
${LITE_DIR}/tools/benchmark/benchmark_base.cc
|
||||
${LITE_DIR}/tools/benchmark/benchmark_unified_api.cc
|
||||
${LITE_DIR}/tools/benchmark/benchmark_c_api.cc
|
||||
${LITE_DIR}/tools/benchmark/benchmark.cc
|
||||
)
|
||||
endif()
|
||||
|
|
|
@ -1 +1 @@
|
|||
760144
|
||||
790864
|
||||
|
|
|
@ -15,6 +15,7 @@ add_executable(benchmark
|
|||
${CMAKE_CURRENT_SOURCE_DIR}/benchmark_base.cc
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/benchmark.cc
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/benchmark_unified_api.cc
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/benchmark_c_api.cc
|
||||
${COMMON_SRC})
|
||||
|
||||
add_dependencies(benchmark fbs_src)
|
||||
|
|
|
@ -114,43 +114,13 @@ int Benchmark::ReadInputFile() {
|
|||
return RET_OK;
|
||||
}
|
||||
|
||||
int Benchmark::ReadTensorData(std::ifstream &in_file_stream, const std::string &tensor_name,
|
||||
const std::vector<size_t> &dims) {
|
||||
std::string line;
|
||||
getline(in_file_stream, line);
|
||||
std::stringstream line_stream(line);
|
||||
if (this->benchmark_data_.find(tensor_name) != this->benchmark_data_.end()) {
|
||||
return RET_OK;
|
||||
}
|
||||
tensor::MSTensor *tensor = session_->GetOutputByTensorName(tensor_name);
|
||||
if (tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "Get tensor failed, tensor name: " << tensor_name;
|
||||
return RET_ERROR;
|
||||
}
|
||||
std::vector<float> data;
|
||||
std::vector<std::string> strings_data;
|
||||
size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
|
||||
if (tensor->data_type() == kObjectTypeString) {
|
||||
strings_data.push_back(line);
|
||||
for (size_t i = 1; i < shape_size; i++) {
|
||||
getline(in_file_stream, line);
|
||||
strings_data.push_back(line);
|
||||
}
|
||||
int Benchmark::GetDataTypeByTensorName(const std::string &tensor_name) {
|
||||
auto tensor = session_->GetOutputByTensorName(tensor_name);
|
||||
if (tensor != nullptr) {
|
||||
return tensor->data_type();
|
||||
} else {
|
||||
for (size_t i = 0; i < shape_size; i++) {
|
||||
float tmp_data;
|
||||
line_stream >> tmp_data;
|
||||
data.push_back(tmp_data);
|
||||
return kTypeUnknown;
|
||||
}
|
||||
}
|
||||
auto *check_tensor = new (std::nothrow) CheckTensor(dims, data, strings_data);
|
||||
if (check_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "New CheckTensor failed, tensor name: " << tensor_name;
|
||||
return RET_ERROR;
|
||||
}
|
||||
this->benchmark_tensor_names_.push_back(tensor_name);
|
||||
this->benchmark_data_.insert(std::make_pair(tensor_name, check_tensor));
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
void Benchmark::InitContext(const std::shared_ptr<Context> &context) {
|
||||
|
@ -521,13 +491,6 @@ int Benchmark::RunBenchmark() {
|
|||
}
|
||||
if (!flags_->benchmark_data_file_.empty()) {
|
||||
status = MarkAccuracy();
|
||||
for (auto &data : benchmark_data_) {
|
||||
data.second->shape.clear();
|
||||
data.second->data.clear();
|
||||
delete data.second;
|
||||
data.second = nullptr;
|
||||
}
|
||||
benchmark_data_.clear();
|
||||
if (status != 0) {
|
||||
MS_LOG(ERROR) << "Run MarkAccuracy error: " << status;
|
||||
std::cout << "Run MarkAccuracy error: " << status << std::endl;
|
||||
|
|
|
@ -53,8 +53,7 @@ class MS_API Benchmark : public BenchmarkBase {
|
|||
|
||||
int ReadInputFile() override;
|
||||
|
||||
int ReadTensorData(std::ifstream &in_file_stream, const std::string &tensor_name,
|
||||
const std::vector<size_t> &dims) override;
|
||||
int GetDataTypeByTensorName(const std::string &tensor_name) override;
|
||||
|
||||
void InitContext(const std::shared_ptr<Context> &context);
|
||||
|
||||
|
|
|
@ -173,6 +173,40 @@ int BenchmarkBase::ReadCalibData() {
|
|||
return RET_OK;
|
||||
}
|
||||
|
||||
int BenchmarkBase::ReadTensorData(std::ifstream &in_file_stream, const std::string &tensor_name,
|
||||
const std::vector<size_t> &dims) {
|
||||
std::string line;
|
||||
getline(in_file_stream, line);
|
||||
std::stringstream line_stream(line);
|
||||
if (this->benchmark_data_.find(tensor_name) != this->benchmark_data_.end()) {
|
||||
return RET_OK;
|
||||
}
|
||||
std::vector<float> data;
|
||||
std::vector<std::string> strings_data;
|
||||
size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
|
||||
if (GetDataTypeByTensorName(tensor_name) == static_cast<int>(kObjectTypeString)) {
|
||||
strings_data.push_back(line);
|
||||
for (size_t i = 1; i < shape_size; i++) {
|
||||
getline(in_file_stream, line);
|
||||
strings_data.push_back(line);
|
||||
}
|
||||
} else {
|
||||
for (size_t i = 0; i < shape_size; i++) {
|
||||
float tmp_data;
|
||||
line_stream >> tmp_data;
|
||||
data.push_back(tmp_data);
|
||||
}
|
||||
}
|
||||
auto *check_tensor = new (std::nothrow) CheckTensor(dims, data, strings_data);
|
||||
if (check_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "New CheckTensor failed, tensor name: " << tensor_name;
|
||||
return RET_ERROR;
|
||||
}
|
||||
this->benchmark_tensor_names_.push_back(tensor_name);
|
||||
this->benchmark_data_.insert(std::make_pair(tensor_name, check_tensor));
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int BenchmarkBase::CompareStringData(const std::string &name, const std::vector<std::string> &calib_strings,
|
||||
const std::vector<std::string> &output_strings) {
|
||||
size_t compare_num = std::min(calib_strings.size(), output_strings.size());
|
||||
|
@ -594,8 +628,11 @@ int BenchmarkBase::PrintPerfResult(const std::vector<std::string> &title,
|
|||
#endif
|
||||
|
||||
BenchmarkBase::~BenchmarkBase() {
|
||||
for (const auto &iter : this->benchmark_data_) {
|
||||
delete (iter.second);
|
||||
for (auto &iter : this->benchmark_data_) {
|
||||
iter.second->shape.clear();
|
||||
iter.second->data.clear();
|
||||
delete iter.second;
|
||||
iter.second = nullptr;
|
||||
}
|
||||
this->benchmark_data_.clear();
|
||||
}
|
||||
|
|
|
@ -39,6 +39,12 @@
|
|||
#include "schema/model_generated.h"
|
||||
|
||||
namespace mindspore::lite {
|
||||
#define BENCHMARK_LOG_ERROR(str) \
|
||||
do { \
|
||||
MS_LOG(ERROR) << str; \
|
||||
std::cerr << str << std::endl; \
|
||||
} while (0);
|
||||
|
||||
enum MS_API InDataType { kImage = 0, kBinary = 1 };
|
||||
|
||||
enum MS_API AiModelDescription_Frequency {
|
||||
|
@ -188,8 +194,9 @@ class MS_API BenchmarkBase {
|
|||
|
||||
int ReadCalibData();
|
||||
|
||||
virtual int ReadTensorData(std::ifstream &in_file_stream, const std::string &tensor_name,
|
||||
const std::vector<size_t> &dims) = 0;
|
||||
int ReadTensorData(std::ifstream &in_file_stream, const std::string &tensor_name, const std::vector<size_t> &dims);
|
||||
|
||||
virtual int GetDataTypeByTensorName(const std::string &tensor_name) = 0;
|
||||
|
||||
virtual int CompareOutput() = 0;
|
||||
|
||||
|
|
|
@ -0,0 +1,430 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "tools/benchmark/benchmark_c_api.h"
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
|
||||
using mindspore::lite::GetTimeUs;
|
||||
using mindspore::lite::kFloatMSEC;
|
||||
using mindspore::lite::RET_ERROR;
|
||||
using mindspore::lite::RET_OK;
|
||||
|
||||
namespace mindspore {
|
||||
namespace tools {
|
||||
int BenchmarkCApi::RunBenchmark() {
|
||||
auto start_prepare_time = GetTimeUs();
|
||||
int ret = InitContext();
|
||||
if (ret != RET_OK) {
|
||||
BENCHMARK_LOG_ERROR("InitContext failed, ret: " << ret);
|
||||
return ret;
|
||||
}
|
||||
model_ = MSModelCreate();
|
||||
ret = MSModelBuildFromFile(model_, flags_->model_file_.c_str(), kMSModelTypeMindIR, context_);
|
||||
if (ret != kMSStatusSuccess) {
|
||||
BENCHMARK_LOG_ERROR("MSModelBuildFromFile failed, ret: " << ret);
|
||||
return ret;
|
||||
}
|
||||
inputs_ = MSModelGetInputs(model_);
|
||||
if (inputs_.handle_list == nullptr) {
|
||||
BENCHMARK_LOG_ERROR("MSModelGetInputs failed, ret: " << ret);
|
||||
return ret;
|
||||
}
|
||||
if (!flags_->resize_dims_.empty()) {
|
||||
std::vector<MSShapeInfo> shape_infos;
|
||||
std::transform(flags_->resize_dims_.begin(), flags_->resize_dims_.end(), std::back_inserter(shape_infos),
|
||||
[&](auto &shapes) {
|
||||
MSShapeInfo shape_info;
|
||||
shape_info.shape_num = shapes.size();
|
||||
for (size_t i = 0; i < shape_info.shape_num; i++) {
|
||||
shape_info.shape[i] = shapes[i];
|
||||
}
|
||||
return shape_info;
|
||||
});
|
||||
ret = MSModelResize(model_, inputs_, shape_infos.data(), inputs_.handle_num);
|
||||
if (ret != kMSStatusSuccess) {
|
||||
BENCHMARK_LOG_ERROR("MSModelResize failed, ret: " << ret);
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
auto end_prepare_time = GetTimeUs();
|
||||
MS_LOG(INFO) << "PrepareTime = " << ((end_prepare_time - start_prepare_time) / kFloatMSEC) << " ms";
|
||||
std::cout << "PrepareTime = " << ((end_prepare_time - start_prepare_time) / kFloatMSEC) << " ms" << std::endl;
|
||||
|
||||
ret = LoadInput();
|
||||
if (ret != kMSStatusSuccess) {
|
||||
BENCHMARK_LOG_ERROR("LoadInput failed, ret: " << ret)
|
||||
return ret;
|
||||
}
|
||||
if (!flags_->benchmark_data_file_.empty()) {
|
||||
ret = MarkAccuracy();
|
||||
} else {
|
||||
ret = MarkPerformance();
|
||||
}
|
||||
if (ret != kMSStatusSuccess) {
|
||||
BENCHMARK_LOG_ERROR("Run failed, ret: " << ret);
|
||||
return ret;
|
||||
}
|
||||
if (flags_->dump_tensor_data_) {
|
||||
BENCHMARK_LOG_ERROR("Dumped file is saved to : " + dump_file_output_dir_)
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int BenchmarkCApi::InitContext() {
|
||||
constexpr int kFrequencyDefault = 3;
|
||||
context_ = MSContextCreate();
|
||||
if (context_ == nullptr) {
|
||||
BENCHMARK_LOG_ERROR("MSContextCreate failed");
|
||||
return RET_ERROR;
|
||||
}
|
||||
MSContextSetThreadNum(context_, flags_->num_threads_);
|
||||
MSContextSetEnableParallel(context_, flags_->enable_parallel_);
|
||||
MSContextSetThreadAffinityMode(context_, flags_->cpu_bind_mode_);
|
||||
|
||||
MSDeviceInfoHandle cpu_device_info = MSDeviceInfoCreate(kMSDeviceTypeCPU);
|
||||
MSDeviceInfoSetEnableFP16(cpu_device_info, flags_->enable_fp16_);
|
||||
MSContextAddDeviceInfo(context_, cpu_device_info);
|
||||
|
||||
if (flags_->device_ == "GPU") {
|
||||
MSDeviceInfoHandle gpu_device_info = MSDeviceInfoCreate(kMSDeviceTypeGPU);
|
||||
MSDeviceInfoSetEnableFP16(gpu_device_info, flags_->enable_fp16_);
|
||||
MSContextAddDeviceInfo(context_, gpu_device_info);
|
||||
}
|
||||
|
||||
if (flags_->device_ == "NPU") {
|
||||
MSDeviceInfoHandle npu_device_info = MSDeviceInfoCreate(kMSDeviceTypeKirinNPU);
|
||||
MSDeviceInfoSetFrequency(npu_device_info, kFrequencyDefault);
|
||||
MSContextAddDeviceInfo(context_, npu_device_info);
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int BenchmarkCApi::GenerateInputData() {
|
||||
for (size_t i = 0; i < inputs_.handle_num; i++) {
|
||||
MSTensorHandle tensor = inputs_.handle_list[i];
|
||||
auto data_type = MSTensorGetDataType(tensor);
|
||||
if (data_type == kMSDataTypeObjectTypeString) {
|
||||
BENCHMARK_LOG_ERROR("Unsupported kMSDataTypeObjectTypeString");
|
||||
return RET_ERROR;
|
||||
} else {
|
||||
auto data_ptr = MSTensorGetMutableData(tensor);
|
||||
auto data_size = MSTensorGetDataSize(tensor);
|
||||
(void)GenerateRandomData(data_size, data_ptr, static_cast<int>(data_type));
|
||||
}
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int BenchmarkCApi::ReadInputFile() {
|
||||
if (this->flags_->in_data_type_ == lite::kImage) {
|
||||
BENCHMARK_LOG_ERROR("Unsupported image input");
|
||||
return RET_ERROR;
|
||||
} else {
|
||||
for (size_t i = 0; i < flags_->input_data_list_.size(); i++) {
|
||||
MSTensorHandle tensor = inputs_.handle_list[i];
|
||||
size_t size;
|
||||
auto bin_buf = lite::ReadFile(flags_->input_data_list_[i].c_str(), &size);
|
||||
if (bin_buf == nullptr) {
|
||||
BENCHMARK_LOG_ERROR("ReadFile failed");
|
||||
return RET_ERROR;
|
||||
}
|
||||
if (MSTensorGetDataType(tensor) == kMSDataTypeObjectTypeString) {
|
||||
BENCHMARK_LOG_ERROR("Unsupported kMSDataTypeObjectTypeString");
|
||||
return RET_ERROR;
|
||||
} else {
|
||||
auto tensor_data_size = MSTensorGetDataSize(tensor);
|
||||
if (tensor_data_size != size) {
|
||||
BENCHMARK_LOG_ERROR("Input file size error, required: " << tensor_data_size << ", in fact: " << size);
|
||||
delete[] bin_buf;
|
||||
return RET_ERROR;
|
||||
}
|
||||
auto input_data = MSTensorGetMutableData(tensor);
|
||||
if (input_data == nullptr) {
|
||||
BENCHMARK_LOG_ERROR("MSTensorGetMutableData failed");
|
||||
return RET_ERROR;
|
||||
}
|
||||
memcpy(input_data, bin_buf, size);
|
||||
}
|
||||
delete[] bin_buf;
|
||||
}
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int BenchmarkCApi::MarkAccuracy() {
|
||||
MS_LOG(INFO) << "MarkAccuracy";
|
||||
std::cout << "MarkAccuracy" << std::endl;
|
||||
auto status = PrintInputData();
|
||||
if (status != RET_OK) {
|
||||
BENCHMARK_LOG_ERROR("PrintInputData failed, ret: " << status);
|
||||
return status;
|
||||
}
|
||||
status = MSModelPredict(model_, inputs_, &outputs_, before_call_back_, after_call_back_);
|
||||
if (status != kMSStatusSuccess) {
|
||||
BENCHMARK_LOG_ERROR("MSModelPredict failed, ret: " << status);
|
||||
return RET_ERROR;
|
||||
}
|
||||
status = ReadCalibData();
|
||||
if (status != RET_OK) {
|
||||
BENCHMARK_LOG_ERROR("ReadCalibData failed, ret: " << status);
|
||||
return status;
|
||||
}
|
||||
status = CompareOutput();
|
||||
if (status != RET_OK) {
|
||||
BENCHMARK_LOG_ERROR("CompareOutput failed, ret: " << status);
|
||||
return status;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int BenchmarkCApi::MarkPerformance() {
|
||||
MS_LOG(INFO) << "Running warm up loops...";
|
||||
std::cout << "Running warm up loops..." << std::endl;
|
||||
for (int i = 0; i < flags_->warm_up_loop_count_; i++) {
|
||||
auto ret = MSModelPredict(model_, inputs_, &outputs_, before_call_back_, after_call_back_);
|
||||
if (ret != kMSStatusSuccess) {
|
||||
BENCHMARK_LOG_ERROR("MSModelPredict failed, ret: " << kMSStatusSuccess);
|
||||
return RET_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << "Running benchmark loops...";
|
||||
std::cout << "Running benchmark loops..." << std::endl;
|
||||
uint64_t time_min = 1000000;
|
||||
uint64_t time_max = 0;
|
||||
uint64_t time_avg = 0;
|
||||
|
||||
for (int i = 0; i < flags_->loop_count_; i++) {
|
||||
auto start = GetTimeUs();
|
||||
auto ret = MSModelPredict(model_, inputs_, &outputs_, before_call_back_, after_call_back_);
|
||||
if (ret != kMSStatusSuccess) {
|
||||
BENCHMARK_LOG_ERROR("MSModelPredict failed, ret: " << kMSStatusSuccess);
|
||||
return RET_ERROR;
|
||||
}
|
||||
auto end = GetTimeUs();
|
||||
auto time = end - start;
|
||||
time_min = std::min(time_min, time);
|
||||
time_max = std::max(time_max, time);
|
||||
time_avg += time;
|
||||
}
|
||||
|
||||
if (flags_->time_profiling_) {
|
||||
const std::vector<std::string> per_op_name = {"opName", "avg(ms)", "percent", "calledTimes", "opTotalTime"};
|
||||
const std::vector<std::string> per_op_type = {"opType", "avg(ms)", "percent", "calledTimes", "opTotalTime"};
|
||||
PrintResult(per_op_name, op_times_by_name_);
|
||||
PrintResult(per_op_type, op_times_by_type_);
|
||||
}
|
||||
|
||||
if (flags_->loop_count_ > 0) {
|
||||
time_avg /= flags_->loop_count_;
|
||||
MS_LOG(INFO) << "Model = "
|
||||
<< flags_->model_file_.substr(flags_->model_file_.find_last_of(lite::DELIM_SLASH) + 1).c_str()
|
||||
<< ", NumThreads = " << flags_->num_threads_ << ", MinRunTime = " << time_min / lite::kFloatMSEC
|
||||
<< ", MaxRuntime = " << time_max / lite::kFloatMSEC
|
||||
<< ", AvgRunTime = " << time_avg / lite::kFloatMSEC;
|
||||
printf("Model = %s, NumThreads = %d, MinRunTime = %f ms, MaxRuntime = %f ms, AvgRunTime = %f ms\n",
|
||||
flags_->model_file_.substr(flags_->model_file_.find_last_of(lite::DELIM_SLASH) + 1).c_str(),
|
||||
flags_->num_threads_, time_min / lite::kFloatMSEC, time_max / lite::kFloatMSEC, time_avg / lite::kFloatMSEC);
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int BenchmarkCApi::GetDataTypeByTensorName(const std::string &tensor_name) {
|
||||
return MSTensorGetDataType(MSModelGetOutputByTensorName(model_, tensor_name.c_str()));
|
||||
}
|
||||
|
||||
int BenchmarkCApi::CompareOutput() {
|
||||
constexpr int kPercentageDivisor = 100;
|
||||
std::cout << "================ Comparing Output data ================" << std::endl;
|
||||
float total_bias = 0;
|
||||
int total_size = 0;
|
||||
for (const auto &calib_tensor : benchmark_data_) {
|
||||
std::string tensor_name = calib_tensor.first;
|
||||
MSTensorHandle tensor = MSModelGetOutputByTensorName(model_, tensor_name.c_str());
|
||||
if (tensor == nullptr) {
|
||||
BENCHMARK_LOG_ERROR("Get tensor failed, tensor name: " << tensor_name);
|
||||
return RET_ERROR;
|
||||
}
|
||||
int ret;
|
||||
if (static_cast<int>(MSTensorGetDataType(tensor)) == kObjectTypeString) {
|
||||
BENCHMARK_LOG_ERROR("Unsupported kMSDataTypeObjectTypeString");
|
||||
return RET_ERROR;
|
||||
} else {
|
||||
ret = CompareDataGetTotalBiasAndSize(tensor_name, tensor, &total_bias, &total_size);
|
||||
}
|
||||
if (ret != RET_OK) {
|
||||
BENCHMARK_LOG_ERROR("Error in CompareData");
|
||||
BENCHMARK_LOG_ERROR("=======================================================");
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
float mean_bias;
|
||||
if (total_size != 0) {
|
||||
mean_bias = ((total_bias / float_t(total_size)) * kPercentageDivisor);
|
||||
} else {
|
||||
mean_bias = 0;
|
||||
}
|
||||
|
||||
std::cout << "Mean bias of all nodes/tensors: " << mean_bias << "%" << std::endl;
|
||||
std::cout << "=======================================================" << std::endl << std::endl;
|
||||
|
||||
if (mean_bias > this->flags_->accuracy_threshold_) {
|
||||
BENCHMARK_LOG_ERROR("Mean bias of all nodes/tensors is too big: " << mean_bias << "%");
|
||||
return RET_ERROR;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int BenchmarkCApi::CompareDataGetTotalBiasAndSize(const std::string &name, MSTensorHandle tensor, float *total_bias,
|
||||
int *total_size) {
|
||||
auto tensor_data = MSTensorGetData(tensor);
|
||||
if (tensor_data == nullptr) {
|
||||
BENCHMARK_LOG_ERROR("MSTensorGetData failed.");
|
||||
return RET_ERROR;
|
||||
}
|
||||
size_t shape_num;
|
||||
const int64_t *shape = MSTensorGetShape(tensor, &shape_num);
|
||||
std::vector<int64_t> vec_shape(shape, shape + shape_num);
|
||||
float bias = 0;
|
||||
switch (static_cast<TypeId>(MSTensorGetDataType(tensor))) {
|
||||
case TypeId::kNumberTypeFloat:
|
||||
case TypeId::kNumberTypeFloat32: {
|
||||
bias = CompareData<float, int64_t>(name, vec_shape, tensor_data);
|
||||
break;
|
||||
}
|
||||
case TypeId::kNumberTypeInt8: {
|
||||
bias = CompareData<int8_t, int64_t>(name, vec_shape, tensor_data);
|
||||
break;
|
||||
}
|
||||
case TypeId::kNumberTypeUInt8: {
|
||||
bias = CompareData<uint8_t, int64_t>(name, vec_shape, tensor_data);
|
||||
break;
|
||||
}
|
||||
case TypeId::kNumberTypeInt32: {
|
||||
bias = CompareData<int32_t, int64_t>(name, vec_shape, tensor_data);
|
||||
break;
|
||||
}
|
||||
case TypeId::kNumberTypeInt16: {
|
||||
bias = CompareData<int16_t, int64_t>(name, vec_shape, tensor_data);
|
||||
break;
|
||||
}
|
||||
case TypeId::kNumberTypeBool: {
|
||||
bias = CompareData<bool, int64_t>(name, vec_shape, tensor_data);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
BENCHMARK_LOG_ERROR("Unsupported data type" << static_cast<int>(MSTensorGetDataType(tensor)));
|
||||
return RET_ERROR;
|
||||
}
|
||||
if (bias < 0) {
|
||||
BENCHMARK_LOG_ERROR("CompareData failed, name: " << name);
|
||||
return RET_ERROR;
|
||||
}
|
||||
*total_bias += bias;
|
||||
*total_size += 1;
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int BenchmarkCApi::PrintInputData() {
|
||||
constexpr int64_t kPrintDataNum = 20;
|
||||
for (size_t i = 0; i < inputs_.handle_num; i++) {
|
||||
auto input = inputs_.handle_list[i];
|
||||
std::cout << "InData" << i << ": ";
|
||||
auto data_type = static_cast<TypeId>(MSTensorGetDataType(input));
|
||||
if (data_type == TypeId::kObjectTypeString) {
|
||||
BENCHMARK_LOG_ERROR("Unsupported kMSDataTypeObjectTypeString.");
|
||||
return RET_ERROR;
|
||||
}
|
||||
auto tensor_data = MSTensorGetData(input);
|
||||
size_t print_num = std::min(MSTensorGetElementNum(input), kPrintDataNum);
|
||||
for (size_t j = 0; j < print_num; j++) {
|
||||
if (data_type == TypeId::kNumberTypeFloat32 || data_type == TypeId::kNumberTypeFloat) {
|
||||
std::cout << static_cast<const float *>(tensor_data)[j] << " ";
|
||||
} else if (data_type == TypeId::kNumberTypeInt8) {
|
||||
std::cout << static_cast<const int8_t *>(tensor_data)[j] << " ";
|
||||
} else if (data_type == TypeId::kNumberTypeUInt8) {
|
||||
std::cout << static_cast<const uint8_t *>(tensor_data)[j] << " ";
|
||||
} else if (data_type == TypeId::kNumberTypeInt32) {
|
||||
std::cout << static_cast<const int32_t *>(tensor_data)[j] << " ";
|
||||
} else if (data_type == TypeId::kNumberTypeInt64) {
|
||||
std::cout << static_cast<const int64_t *>(tensor_data)[j] << " ";
|
||||
} else if (data_type == TypeId::kNumberTypeBool) {
|
||||
std::cout << static_cast<const bool *>(tensor_data)[j] << " ";
|
||||
} else {
|
||||
BENCHMARK_LOG_ERROR("Datatype: " << data_type << " is not supported.");
|
||||
return RET_ERROR;
|
||||
}
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int BenchmarkCApi::InitTimeProfilingCallbackParameter() {
|
||||
before_call_back_ = TimeBeforeCallback;
|
||||
after_call_back_ = TimeAfterCallback;
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int BenchmarkCApi::InitPerfProfilingCallbackParameter() {
|
||||
BENCHMARK_LOG_ERROR("Unsupported feature.");
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
||||
int BenchmarkCApi::InitPrintTensorDataCallbackParameter() {
|
||||
BENCHMARK_LOG_ERROR("Unsupported feature.");
|
||||
return RET_ERROR;
|
||||
}
|
||||
int BenchmarkCApi::InitDumpTensorDataCallbackParameter() {
|
||||
BENCHMARK_LOG_ERROR("Unsupported feature.");
|
||||
return RET_ERROR;
|
||||
}
|
||||
} // namespace tools
|
||||
} // namespace mindspore
|
||||
|
||||
uint64_t g_op_begin_ = 0;
|
||||
int g_op_call_times_total_ = 0;
|
||||
float g_op_cost_total_ = 0.0f;
|
||||
std::map<std::string, std::pair<int, float>> g_op_times_by_type_;
|
||||
std::map<std::string, std::pair<int, float>> g_op_times_by_name_;
|
||||
|
||||
bool TimeBeforeCallback(const MSTensorHandleArray inputs, const MSTensorHandleArray outputs,
|
||||
const MSCallBackParamC kernel_Info) {
|
||||
if (g_op_times_by_type_.find(kernel_Info.node_type) == g_op_times_by_type_.end()) {
|
||||
g_op_times_by_type_.insert(std::make_pair(kernel_Info.node_type, std::make_pair(0, 0.0f)));
|
||||
}
|
||||
if (g_op_times_by_name_.find(kernel_Info.node_name) == g_op_times_by_name_.end()) {
|
||||
g_op_times_by_name_.insert(std::make_pair(kernel_Info.node_name, std::make_pair(0, 0.0f)));
|
||||
}
|
||||
|
||||
g_op_call_times_total_++;
|
||||
g_op_begin_ = mindspore::lite::GetTimeUs();
|
||||
return true;
|
||||
}
|
||||
|
||||
bool TimeAfterCallback(const MSTensorHandleArray inputs, const MSTensorHandleArray outputs,
|
||||
const MSCallBackParamC kernel_Info) {
|
||||
uint64_t opEnd = mindspore::lite::GetTimeUs();
|
||||
float cost = static_cast<float>(opEnd - g_op_begin_) / mindspore::lite::kFloatMSEC;
|
||||
g_op_cost_total_ += cost;
|
||||
g_op_times_by_type_[kernel_Info.node_type].first++;
|
||||
g_op_times_by_type_[kernel_Info.node_type].second += cost;
|
||||
g_op_times_by_name_[kernel_Info.node_name].first++;
|
||||
g_op_times_by_name_[kernel_Info.node_name].second += cost;
|
||||
return true;
|
||||
}
|
|
@ -0,0 +1,76 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_LITE_TOOLS_BENCHMARK_BENCHMARK_C_API_H_
|
||||
#define MINDSPORE_LITE_TOOLS_BENCHMARK_BENCHMARK_C_API_H_
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include "tools/benchmark/benchmark_base.h"
|
||||
#include "include/c_api/model_c.h"
|
||||
#include "include/c_api/context_c.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
bool TimeBeforeCallback(const MSTensorHandleArray inputs, const MSTensorHandleArray outputs,
|
||||
const MSCallBackParamC kernel_Info);
|
||||
bool TimeAfterCallback(const MSTensorHandleArray inputs, const MSTensorHandleArray outputs,
|
||||
const MSCallBackParamC kernel_Info);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
using mindspore::lite::BenchmarkBase;
|
||||
using mindspore::lite::BenchmarkFlags;
|
||||
|
||||
namespace mindspore::tools {
|
||||
class MS_API BenchmarkCApi : public BenchmarkBase {
|
||||
public:
|
||||
explicit BenchmarkCApi(BenchmarkFlags *flags) : BenchmarkBase(flags) {}
|
||||
|
||||
virtual ~BenchmarkCApi() { MSModelDestroy(&model_); }
|
||||
|
||||
int RunBenchmark() override;
|
||||
|
||||
protected:
|
||||
int CompareDataGetTotalBiasAndSize(const std::string &name, MSTensorHandle tensor, float *total_bias,
|
||||
int *total_size);
|
||||
int InitContext();
|
||||
int GenerateInputData() override;
|
||||
int ReadInputFile() override;
|
||||
int GetDataTypeByTensorName(const std::string &tensor_name) override;
|
||||
int CompareOutput() override;
|
||||
|
||||
int InitTimeProfilingCallbackParameter() override;
|
||||
int InitPerfProfilingCallbackParameter() override;
|
||||
int InitDumpTensorDataCallbackParameter() override;
|
||||
int InitPrintTensorDataCallbackParameter() override;
|
||||
|
||||
int PrintInputData();
|
||||
int MarkPerformance();
|
||||
int MarkAccuracy();
|
||||
|
||||
private:
|
||||
MSModelHandle model_ = nullptr;
|
||||
MSContextHandle context_ = nullptr;
|
||||
MSTensorHandleArray inputs_;
|
||||
MSTensorHandleArray outputs_;
|
||||
|
||||
MSKernelCallBackC before_call_back_ = nullptr;
|
||||
MSKernelCallBackC after_call_back_ = nullptr;
|
||||
};
|
||||
} // namespace mindspore::tools
|
||||
#endif // MINDSPORE_LITE_TOOLS_BENCHMARK_BENCHMARK_C_API_H_
|
|
@ -121,43 +121,8 @@ int BenchmarkUnifiedApi::ReadInputFile() {
|
|||
return RET_OK;
|
||||
}
|
||||
|
||||
int BenchmarkUnifiedApi::ReadTensorData(std::ifstream &in_file_stream, const std::string &tensor_name,
|
||||
const std::vector<size_t> &dims) {
|
||||
std::string line;
|
||||
getline(in_file_stream, line);
|
||||
std::stringstream line_stream(line);
|
||||
if (this->benchmark_data_.find(tensor_name) != this->benchmark_data_.end()) {
|
||||
return RET_OK;
|
||||
}
|
||||
mindspore::MSTensor tensor = ms_model_.GetOutputByTensorName(tensor_name);
|
||||
if (tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "Get tensor failed, tensor name: " << tensor_name;
|
||||
return RET_ERROR;
|
||||
}
|
||||
std::vector<float> data;
|
||||
std::vector<std::string> strings_data;
|
||||
size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
|
||||
if (static_cast<int>(tensor.DataType()) == kObjectTypeString) {
|
||||
strings_data.push_back(line);
|
||||
for (size_t i = 1; i < shape_size; i++) {
|
||||
getline(in_file_stream, line);
|
||||
strings_data.push_back(line);
|
||||
}
|
||||
} else {
|
||||
for (size_t i = 0; i < shape_size; i++) {
|
||||
float tmp_data;
|
||||
line_stream >> tmp_data;
|
||||
data.push_back(tmp_data);
|
||||
}
|
||||
}
|
||||
auto *check_tensor = new (std::nothrow) CheckTensor(dims, data, strings_data);
|
||||
if (check_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "New CheckTensor failed, tensor name: " << tensor_name;
|
||||
return RET_ERROR;
|
||||
}
|
||||
this->benchmark_tensor_names_.push_back(tensor_name);
|
||||
this->benchmark_data_.insert(std::make_pair(tensor_name, check_tensor));
|
||||
return RET_OK;
|
||||
int BenchmarkUnifiedApi::GetDataTypeByTensorName(const std::string &tensor_name) {
|
||||
return static_cast<int>(ms_model_.GetOutputByTensorName(tensor_name).DataType());
|
||||
}
|
||||
|
||||
void BenchmarkUnifiedApi::UpdateDistributionModelName(const std::shared_ptr<mindspore::Context> &context,
|
||||
|
@ -537,13 +502,6 @@ int BenchmarkUnifiedApi::RunBenchmark() {
|
|||
}
|
||||
if (!flags_->benchmark_data_file_.empty()) {
|
||||
status = MarkAccuracy();
|
||||
for (auto &data : benchmark_data_) {
|
||||
data.second->shape.clear();
|
||||
data.second->data.clear();
|
||||
delete data.second;
|
||||
data.second = nullptr;
|
||||
}
|
||||
benchmark_data_.clear();
|
||||
if (status != 0) {
|
||||
MS_LOG(ERROR) << "Run MarkAccuracy error: " << status;
|
||||
std::cout << "Run MarkAccuracy error: " << status << std::endl;
|
||||
|
|
|
@ -57,11 +57,10 @@ class MS_API BenchmarkUnifiedApi : public BenchmarkBase {
|
|||
|
||||
int ReadInputFile() override;
|
||||
|
||||
int ReadTensorData(std::ifstream &in_file_stream, const std::string &tensor_name,
|
||||
const std::vector<size_t> &dims) override;
|
||||
|
||||
void InitMSContext(const std::shared_ptr<Context> &context);
|
||||
|
||||
int GetDataTypeByTensorName(const std::string &tensor_name) override;
|
||||
|
||||
int CompareOutput() override;
|
||||
|
||||
int InitTimeProfilingCallbackParameter() override;
|
||||
|
|
|
@ -17,6 +17,7 @@
|
|||
#include "tools/benchmark/run_benchmark.h"
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include "tools/benchmark/benchmark_c_api.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace lite {
|
||||
|
@ -34,20 +35,23 @@ int RunBenchmark(int argc, const char **argv) {
|
|||
return RET_OK;
|
||||
}
|
||||
|
||||
// get dump data output path
|
||||
auto new_api = std::getenv("ENABLE_NEW_API");
|
||||
bool run_old_api = (new_api == nullptr || std::string(new_api) != "true");
|
||||
if (flags.config_file_ != "") {
|
||||
run_old_api = false;
|
||||
auto api_type = std::getenv("MSLITE_API_TYPE");
|
||||
if (api_type != nullptr) {
|
||||
MS_LOG(INFO) << "MSLITE_API_TYPE = " << api_type;
|
||||
std::cout << "MSLITE_API_TYPE = " << api_type << std::endl;
|
||||
}
|
||||
if (IsCharEndWith(flags.model_file_.c_str(), MINDIR_POSTFIX)) {
|
||||
run_old_api = false;
|
||||
}
|
||||
std::unique_ptr<BenchmarkBase> benchmark;
|
||||
if (run_old_api) {
|
||||
benchmark = std::make_unique<Benchmark>(&flags);
|
||||
BenchmarkBase *benchmark = nullptr;
|
||||
if (flags.config_file_ != "" || IsCharEndWith(flags.model_file_.c_str(), MINDIR_POSTFIX) ||
|
||||
(api_type != nullptr && std::string(api_type) == "NEW")) {
|
||||
benchmark = new (std::nothrow) BenchmarkUnifiedApi(&flags);
|
||||
} else if (api_type == nullptr || std::string(api_type) == "OLD") {
|
||||
benchmark = new (std::nothrow) Benchmark(&flags);
|
||||
} else if (std::string(api_type) == "C") {
|
||||
benchmark = new (std::nothrow) tools::BenchmarkCApi(&flags);
|
||||
} else {
|
||||
benchmark = std::make_unique<BenchmarkUnifiedApi>(&flags);
|
||||
MS_LOG(ERROR) << "Invalid MSLITE_API_TYPE, (OLD/NEW/C, default:OLD)";
|
||||
std::cerr << "Invalid MSLITE_API_TYPE, (OLD/NEW/C, default:OLD)" << std::endl;
|
||||
return RET_ERROR;
|
||||
}
|
||||
if (benchmark == nullptr) {
|
||||
MS_LOG(ERROR) << "new benchmark failed ";
|
||||
|
@ -75,6 +79,7 @@ int RunBenchmark(int argc, const char **argv) {
|
|||
<< " Success.";
|
||||
std::cout << "Run Benchmark " << flags.model_file_.substr(flags.model_file_.find_last_of(DELIM_SLASH) + 1).c_str()
|
||||
<< " Success." << std::endl;
|
||||
delete benchmark;
|
||||
return RET_OK;
|
||||
}
|
||||
} // namespace lite
|
||||
|
|
|
@ -144,6 +144,7 @@ getCommonFile() {
|
|||
while IFS='' read -r line; do cxx_api_files+=("$line"); done < <(ls mindspore/lite/src/cxx_api/model/*.cc)
|
||||
while IFS='' read -r line; do cxx_api_files+=("$line"); done < <(ls mindspore/lite/src/cxx_api/tensor/*.cc)
|
||||
while IFS='' read -r line; do cxx_api_files+=("$line"); done < <(ls mindspore/lite/src/cxx_api/*.cc)
|
||||
while IFS='' read -r line; do cxx_api_files+=("$line"); done < <(ls mindspore/lite/src/c_api/*.cc)
|
||||
mindrt_files=()
|
||||
while IFS='' read -r line; do mindrt_files+=("$line"); done < <(ls mindspore/core/mindrt/src/*.cc)
|
||||
while IFS='' read -r line; do mindrt_files+=("$line"); done < <(ls mindspore/core/mindrt/src/async/*.cc)
|
||||
|
|
Loading…
Reference in New Issue