Update api docs

This commit is contained in:
shaojunsong 2023-02-20 20:16:23 +08:00
parent 1eeeba149e
commit c5693d534e
12 changed files with 45 additions and 42 deletions

View File

@ -3,13 +3,13 @@ mindspore.Tensor.new_ones
.. py:method:: mindspore.Tensor.new_ones(size, *, dtype=None) .. py:method:: mindspore.Tensor.new_ones(size, *, dtype=None)
返回一个大小为 `size` 的Tensor填充值为1。默认情况下返回的Tensor和 `self` 具有相同的数据类型。 返回一个大小为 `size` 的Tensor填充值为1。
参数: 参数:
- **size** (Union[int, tuple, list]) - 定义输出的shape。 - **size** (Union[int, tuple, list]) - 定义输出的shape。
关键字参数: 关键字参数:
- **dtype** (mindspore.dtype, 可选) - 输出的数据类型。默认值None使用和 `self` 相同的数据类型。 - **dtype** (mindspore.dtype, 可选) - 输出的数据类型。默认值None返回的Tensor使用和 `self` 相同的数据类型。
返回: 返回:
Tensorshape和dtype由输入定义填充值为1。 Tensorshape和dtype由输入定义填充值为1。

View File

@ -3,13 +3,13 @@ mindspore.Tensor.new_zeros
.. py:method:: mindspore.Tensor.new_zeros(size, *, dtype=None) .. py:method:: mindspore.Tensor.new_zeros(size, *, dtype=None)
返回一个大小为 `size` 的Tensor填充值为0。默认情况下返回的Tensor和 `self` 具有相同的数据类型。 返回一个大小为 `size` 的Tensor填充值为0。
参数: 参数:
- **size** (Union[int, tuple, list]) - 定义输出的shape。 - **size** (Union[int, tuple, list]) - 定义输出的shape。
关键字参数: 关键字参数:
- **dtype** (mindspore.dtype, 可选) - 输出的数据类型。默认值None使用和 `self` 相同的数据类型。 - **dtype** (mindspore.dtype, 可选) - 输出的数据类型。默认值None返回的Tensor使用和 `self` 相同的数据类型。
返回: 返回:
Tensorshape和dtype由输入定义填充值为0。 Tensorshape和dtype由输入定义填充值为0。

View File

@ -3,7 +3,7 @@
.. py:function:: mindspore.ops.addbmm(x, batch1, batch2, *, beta=1, alpha=1) .. py:function:: mindspore.ops.addbmm(x, batch1, batch2, *, beta=1, alpha=1)
`batch1``batch2` 应用批量矩阵乘法后进行reduced add。矩阵 `x` 和最终的结果相加。 `batch1``batch2` 应用批量矩阵乘法后进行reduced add `x` 和最终的结果相加。
`alpha``beta` 分别是 `batch1``batch2` 矩阵乘法和 `x` 的乘数。如果 `beta` 是0那么 `x` 将会被忽略。 `alpha``beta` 分别是 `batch1``batch2` 矩阵乘法和 `x` 的乘数。如果 `beta` 是0那么 `x` 将会被忽略。
.. math:: .. math::

View File

@ -3,7 +3,7 @@ mindspore.ops.hinge_embedding_loss
.. py:function:: mindspore.ops.hinge_embedding_loss(inputs, targets, margin=1.0, reduction="mean") .. py:function:: mindspore.ops.hinge_embedding_loss(inputs, targets, margin=1.0, reduction="mean")
Hinge Embedding 损失函数。按输入元素计算输出。衡量输入x和标签y包含1或-1之间的损失值。通常被用来衡量两个输入之间的相似度 Hinge Embedding 损失函数,衡量输入 `inputs` 和标签 `targets` 包含1或-1之间的损失值
mini-batch中的第n个样例的损失函数为 mini-batch中的第n个样例的损失函数为

View File

@ -3,10 +3,14 @@ mindspore.ops.inner
.. py:function:: mindspore.ops.inner(x, other) .. py:function:: mindspore.ops.inner(x, other)
计算两个1D Tensor的点积。对于更高维度来说计算结果为在最后一维上逐元素乘法的和。 计算两个1D Tensor的点积。
对于1D Tensor没有复数共轭的情况返回两个向量的点积。
对于更高的维度,返回最后一个轴上的和积。
.. note:: .. note::
如果 `x``other` 之一是标量,那么相当于 :code:`mindspore.ops.mul(x, other)` 如果 `x``other` 之一是标量,那么 :func:`mindspore.ops.inner` 相当于 :func:`mindspore.ops.mul`。
参数: 参数:
- **x** (Tensor) - 第一个输入。 - **x** (Tensor) - 第一个输入。

View File

@ -3,7 +3,7 @@ mindspore.ops.randint_like
.. py:function:: mindspore.ops.randint_like(x, low, high, *, dtype=None, seed=None) .. py:function:: mindspore.ops.randint_like(x, low, high, *, dtype=None, seed=None)
返回一个Tensor其元素为 [ `low` , `high` ) 区间的随机整数。 返回一个Tensor其元素为 [ `low` , `high` ) 区间的随机整数,根据 `x` 决定shape和dtype
参数: 参数:
- **x** (Tensor) - 输入的Tensor用来决定输出Tensor的shape和默认的dtype。 - **x** (Tensor) - 输入的Tensor用来决定输出Tensor的shape和默认的dtype。

View File

@ -4126,14 +4126,14 @@ class Tensor(Tensor_):
def new_zeros(self, size, *, dtype=None): def new_zeros(self, size, *, dtype=None):
r""" r"""
Return a tensor of `size` filled with zeros. By default, the returned tensor has the same dtype as `self`. Return a tensor of `size` filled with zeros.
Args: Args:
size (Union[int, tuple, list]): An int, list or tuple of integers defining the output shape. size (Union[int, tuple, list]): An int, list or tuple of integers defining the output shape.
Keyword Args: Keyword Args:
dtype (mindspore.dtype, optional): The desired dtype of the output tensor. If None, same dtype as `self`. dtype (mindspore.dtype, optional): The desired dtype of the output tensor. If None, the returned tensor has
Default: None. thesame dtype as `self`. Default: None.
Returns: Returns:
Tensor, the shape and dtype is defined above and filled with zeros. Tensor, the shape and dtype is defined above and filled with zeros.
@ -4160,14 +4160,14 @@ class Tensor(Tensor_):
def new_ones(self, size, *, dtype=None): def new_ones(self, size, *, dtype=None):
r""" r"""
Return a tensor of `size` filled with ones. By default, the returned tensor has the same dtype as `self`. Return a tensor of `size` filled with ones.
Args: Args:
size (Union[int, tuple, list]): An int, list or tuple of integers defining the output shape. size (Union[int, tuple, list]): An int, list or tuple of integers defining the output shape.
Keyword Args: Keyword Args:
dtype (mindspore.dtype, optional): The desired dtype of the output tensor. Default: if None, same dtype as dtype (mindspore.dtype, optional): The desired dtype of the output tensor. If None, the returned
`self`. tensor has the same dtype as `self`. Default: None.
Returns: Returns:
Tensor, the shape and dtype is defined above and filled with ones. Tensor, the shape and dtype is defined above and filled with ones.

View File

@ -2469,9 +2469,7 @@ class GaussianNLLLoss(LossBase):
class HingeEmbeddingLoss(LossBase): class HingeEmbeddingLoss(LossBase):
r""" r"""
Hinge Embedding Loss. Compute the output according to the input elements. Measures the loss given an input tensor x Measures Hinge Embedding Loss given an input Tensor `logits` and a labels Tensor `labels` (containing 1 or -1).
and a labels tensor y (containing 1 or -1).
This is usually used for measuring the similarity between two inputs.
The loss function for :math:`n`-th sample in the mini-batch is The loss function for :math:`n`-th sample in the mini-batch is

View File

@ -387,15 +387,15 @@ def hamming_window(window_length, periodic=True, alpha=0.54, beta=0.46, *, dtype
def where(condition, x, y): def where(condition, x, y):
r""" r"""
Returns a tensor whose elements are selected from either `x` or `y` depending on `condition`. Selects elements from `x` or `y` based on `condition` and returns a tensor.
.. math:: .. math::
output_i = \begin{cases} x_i,\quad &if\ condition_i \\ y_i,\quad &otherwise \end{cases} output_i = \begin{cases} x_i,\quad &if\ condition_i \\ y_i,\quad &otherwise \end{cases}
Args: Args:
condition (Union[Bool Tensor, bool, scalar]): If True, yield `x` otherwise yield `y`. condition (Union[Bool Tensor, bool, scalar]): If True, yield `x`, otherwise yield `y`.
x (Union[Tensor, Scalar]): Value (if `x` is a scalar) or values selected at indices where condition is True. x (Union[Tensor, Scalar]): When `condition` is True, values to select from.
y (Union[Tensor, Scalar]): Value (if `y` is a scalar) or values selected at indices where condition is False. y (Union[Tensor, Scalar]): When `condition` is Fasle, values to select from.
Returns: Returns:
Tensor, elements are selected from `x` and `y`. Tensor, elements are selected from `x` and `y`.

View File

@ -1285,7 +1285,7 @@ def log(x):
def logdet(x): def logdet(x):
r""" r"""
Calculates log determinant of a square matrix or batches of square matrices. Calculates log determinant of one or a batch of square matrices.
Args: Args:
x (Tensor): Input Tensor of any dimension. x (Tensor): Input Tensor of any dimension.
@ -5003,8 +5003,7 @@ def mv(mat, vec):
def addbmm(x, batch1, batch2, *, beta=1, alpha=1): def addbmm(x, batch1, batch2, *, beta=1, alpha=1):
r""" r"""
Applies batch matrix multiplication to `batch1` and `batch2`, with a reduced add step. The matrix `x` is add to Applies batch matrix multiplication to `batch1` and `batch2`, with a reduced add step and add `x` to the result.
final result.
The optional values `alpha` and `beta` are the matrix-matrix product between `batch1` and `batch2` and the scale The optional values `alpha` and `beta` are the matrix-matrix product between `batch1` and `batch2` and the scale
factor for the added tensor `x` respectively. If `beta` is 0, then `x` will be ignored. factor for the added tensor `x` respectively. If `beta` is 0, then `x` will be ignored.
@ -5163,7 +5162,7 @@ def addmv(x, mat, vec, beta=1, alpha=1):
def adjoint(x): def adjoint(x):
r""" r"""
Returns a view of the tensor conjugated and with the last two dimensions transposed. Returns the conjugate with the last two dimensions transposed.
Args: Args:
x (Tensor): Input tensor. x (Tensor): Input tensor.
@ -7933,11 +7932,15 @@ def matmul(x1, x2):
def inner(x, other): def inner(x, other):
r""" r"""
Computes the dot product of 1D tensors. For higher dimensions, the result will be the summation of the elemental Returns the inner product of two tensors.
wise production along their last dimension.
For 1-D tensors (without complex conjugation), returns the ordinary inner product of vectors.
For higher dimensions, returns a sum product over the last axis.
Note: Note:
If either `x` or `other` is a Tensor scalar, the result is equivalent to mindspore.mul(x, other). If `x` or `other` is a Tensor scalar, :func:`mindspore.ops.inner` will be the same as
:func:`mindspore.ops.mul` .
Args: Args:
x (Tensor): First input. x (Tensor): First input.

View File

@ -4065,9 +4065,7 @@ def gaussian_nll_loss(x, target, var, full=False, eps=1e-6, reduction='mean'):
def hinge_embedding_loss(inputs, targets, margin=1.0, reduction='mean'): def hinge_embedding_loss(inputs, targets, margin=1.0, reduction='mean'):
r""" r"""
Hinge Embedding Loss. Compute the output according to the input elements. Measures the loss given an input tensor x Measures Hinge Embedding Loss given an input Tensor `logits` and a labels Tensor `labels` (containing 1 or -1).
and a labels tensor y (containing 1 or -1).
This is usually used for measuring the similarity between two inputs.
The loss function for :math:`n`-th sample in the mini-batch is The loss function for :math:`n`-th sample in the mini-batch is

View File

@ -847,8 +847,8 @@ def _generate_shapes(shape):
@_function_forbid_reuse @_function_forbid_reuse
def rand(*size, dtype=None, seed=None): def rand(*size, dtype=None, seed=None):
r""" r"""
Returns a new Tensor with given shape and dtype, filled with random numbers from the uniform distribution on the Returns a new tensor that fills numbers from the uniform distribution over an interval :math:`[0, 1)`
interval :math:`[0, 1)`. based on the given shape and dtype.
Args: Args:
size (Union[int, tuple(int), list(int)]): Shape of the new tensor, e.g. :math:`(2, 3)` or :math:`2`. size (Union[int, tuple(int), list(int)]): Shape of the new tensor, e.g. :math:`(2, 3)` or :math:`2`.
@ -890,8 +890,8 @@ def rand(*size, dtype=None, seed=None):
@_function_forbid_reuse @_function_forbid_reuse
def rand_like(x, seed=None, *, dtype=None): def rand_like(x, seed=None, *, dtype=None):
r""" r"""
Returns a new Tensor with the shape and dtype as `x`, filled with random numbers from the uniform distribution on Returns a new tensor that fills numbers from the uniform distribution over an interval :math:`[0, 1)`
the interval :math:`[0, 1)`. based on the given shape and dtype.
Args: Args:
x (Tensor): Input Tensor to specify the output shape and its default dtype. x (Tensor): Input Tensor to specify the output shape and its default dtype.
@ -961,9 +961,9 @@ def randn(*size, dtype=None, seed=None):
Examples: Examples:
>>> import mindspore.ops as ops >>> import mindspore.ops as ops
>>> print(ops.randn((2,3))) >>> print(ops.randn((2, 2)))
[[ 0.30639967 -0.42438635 -0.20454668] [[ 0.30639967 -0.42438635]
[-0.4287376 1.3054721 0.64747655]] [-0.4287376 1.3054721 ]]
""" """
if dtype is None: if dtype is None:
dtype = mstype.float32 dtype = mstype.float32
@ -1025,7 +1025,7 @@ def randn_like(x, seed=None, *, dtype=None):
@_function_forbid_reuse @_function_forbid_reuse
def randint(low, high, size, seed=None, *, dtype=None): def randint(low, high, size, seed=None, *, dtype=None):
r""" r"""
Return a Tensor whose elements are random integers from low (inclusive) to high (exclusive). Returns a Tensor whose elements are random integers in the range of [ `low` , `high` ) .
Args: Args:
low (int): Start value of interval. low (int): Start value of interval.
@ -1077,8 +1077,8 @@ def randint(low, high, size, seed=None, *, dtype=None):
@_function_forbid_reuse @_function_forbid_reuse
def randint_like(x, low, high, seed=None, *, dtype=None): def randint_like(x, low, high, seed=None, *, dtype=None):
r""" r"""
Returns a tensor with the same shape as Tensor `x` filled with random integers generated uniformly between Returns a tensor with the same shape as Tensor `x` whose elements are random integers in the range
low (inclusive) and high (exclusive). of [ `low` , `high` ) .
Args: Args:
x (Tensor): Input Tensor to specify the output shape and its default dtype. x (Tensor): Input Tensor to specify the output shape and its default dtype.