usr mindspore. instead of mstype.
This commit is contained in:
parent
9e17b996c7
commit
c4f9230f03
|
@ -230,8 +230,8 @@ def ms_function(fn=None, obj=None, input_signature=None):
|
|||
>>> z = F.tensor_add(x, y)
|
||||
>>> return z
|
||||
>>>
|
||||
>>> @ms_function(input_signature=(MetaTensor(mstype.float32, (1, 1, 3, 3)),
|
||||
>>> MetaTensor(mstype.float32, (1, 1, 3, 3))))
|
||||
>>> @ms_function(input_signature=(MetaTensor(mindspore.float32, (1, 1, 3, 3)),
|
||||
>>> MetaTensor(mindspore.float32, (1, 1, 3, 3))))
|
||||
>>> def tensor_add_with_sig(x, y):
|
||||
>>> z = F.tensor_add(x, y)
|
||||
>>> return z
|
||||
|
|
|
@ -282,7 +282,7 @@ def initializer(init, shape=None, dtype=mstype.float32):
|
|||
Tensor, initialized tensor.
|
||||
|
||||
Examples:
|
||||
>>> tensor = initializer('ones', [1, 2, 3], mstype.float32)
|
||||
>>> tensor = initializer('ones', [1, 2, 3], mindspore.float32)
|
||||
"""
|
||||
if not isinstance(init, (Tensor, numbers.Number, str, Initializer)):
|
||||
raise TypeError('Unsupported init type.')
|
||||
|
|
|
@ -1814,7 +1814,7 @@ class TFRecordDataset(SourceDataset):
|
|||
>>> tfdataset = ds.TFRecordDataset(dataset_files=dataset_files)
|
||||
>>> # 2) get all rows from dataset_files with user-defined schema:
|
||||
>>> schema = ds.Schema()
|
||||
>>> schema.add_column('col_1d', de_type=mstype.int64, shape=[2])
|
||||
>>> schema.add_column('col_1d', de_type=mindspore.int64, shape=[2])
|
||||
>>> tfdataset = ds.TFRecordDataset(dataset_files=dataset_files, schema=schema)
|
||||
>>> # 3) get all rows from dataset_files with schema file "./schema.json":
|
||||
>>> tfdataset = ds.TFRecordDataset(dataset_files=dataset_files, schema="./schema.json")
|
||||
|
@ -2325,7 +2325,7 @@ class Schema:
|
|||
>>> import mindspore.common.dtype as mstype
|
||||
>>> # create schema, specify column name, mindspore.dtype and shape of the column
|
||||
>>> schema = ds.Schema()
|
||||
>>> schema.add_column('col1', de_type=mstype.int64, shape=[2])
|
||||
>>> schema.add_column('col1', de_type=mindspore.int64, shape=[2])
|
||||
"""
|
||||
|
||||
def __init__(self, schema_file=None):
|
||||
|
|
|
@ -1535,7 +1535,8 @@ class StridedSlice(PrimitiveWithInfer):
|
|||
- Finally, the output is [3, 3, 3].
|
||||
|
||||
Examples
|
||||
>>> input_x = Tensor([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]]])
|
||||
>>> input_x = Tensor([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]],
|
||||
>>> [[5, 5, 5], [6, 6, 6]]], mindspore.float32)
|
||||
>>> slice = StridedSlice()
|
||||
>>> output = slice(input_x, (1, 0, 0), (2, 1, 3), (1, 1, 1))
|
||||
>>> output.shape()
|
||||
|
@ -2067,7 +2068,7 @@ class SpaceToBatch(PrimitiveWithInfer):
|
|||
>>> block_size = 2
|
||||
>>> paddings = [[0, 0], [0, 0]]
|
||||
>>> space_to_batch = P.SpaceToBatch(block_size, paddings)
|
||||
>>> x = Tensor(np.array([[[[1, 2], [3, 4]]]]), mstype.float32)
|
||||
>>> x = Tensor(np.array([[[[1, 2], [3, 4]]]]), mindspore.float32)
|
||||
>>> space_to_batch(x)
|
||||
[[[[1.]]], [[[2.]]], [[[3.]]], [[[4.]]]]
|
||||
|
||||
|
@ -2135,7 +2136,7 @@ class BatchToSpace(PrimitiveWithInfer):
|
|||
>>> block_size = 2
|
||||
>>> crops = [[0, 0], [0, 0]]
|
||||
>>> op = P.BatchToSpace(block_size, crops)
|
||||
>>> x = Tensor(np.array([[[[1]]], [[[2]]], [[[3]]], [[[4]]]]), mstype.float32)
|
||||
>>> x = Tensor(np.array([[[[1]]], [[[2]]], [[[3]]], [[[4]]]]), mindspore.float32)
|
||||
>>> output = op(x)
|
||||
[[[[1., 2.], [3., 4.]]]]
|
||||
|
||||
|
|
|
@ -1908,8 +1908,8 @@ class Atan2(_MathBinaryOp):
|
|||
Tensor, the shape is same as the shape after broadcasting, and the data type is same as 'input_x'.
|
||||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([[0, 1]]), mstype.float32)
|
||||
>>> input_y = Tensor(np.array([[1, 1]]), mstype.float32)
|
||||
>>> input_x = Tensor(np.array([[0, 1]]), mindspore.float32)
|
||||
>>> input_y = Tensor(np.array([[1, 1]]), mindspore.float32)
|
||||
>>> atan2 = P.Atan2()
|
||||
>>> atan2(input_x, input_y)
|
||||
[[0. 0.7853982]]
|
||||
|
|
|
@ -528,7 +528,7 @@ class Model:
|
|||
Tensor, array(s) of predictions.
|
||||
|
||||
Examples:
|
||||
>>> input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]), mstype.float32)
|
||||
>>> input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]), mindspore.float32)
|
||||
>>> model = Model(Net())
|
||||
>>> model.predict(input_data)
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue