clould
This commit is contained in:
parent
fd262eb3b8
commit
c08ec63080
|
@ -105,7 +105,7 @@ step1: prepare pretrained model: train a mobilenet_v2 model by mindspore or use
|
|||
# The key/cell/module name must as follow, otherwise you need to modify "name_map" function:
|
||||
# --mindspore: as the same as mobilenet_v2_key.ckpt
|
||||
# --pytorch: same as official pytorch model(e.g., official mobilenet_v2-b0353104.pth)
|
||||
python convert_weight_mobilenetv2.py --ckpt_fn=./mobilenet_v2_key.ckpt --pt_fn=./mobilenet_v2-b0353104.pth --out_ckpt_fn=./mobilenet_v2.ckpt
|
||||
python convert_weight_centerface.py --ckpt_fn=./mobilenet_v2_key.ckpt --pt_fn=./mobilenet_v2-b0353104.pth --out_ckpt_fn=./mobilenet_v2.ckpt
|
||||
```
|
||||
|
||||
step2: prepare dataset
|
||||
|
@ -178,6 +178,109 @@ step6: eval
|
|||
sh eval_all.sh [ground_truth_path]
|
||||
```
|
||||
|
||||
- Running on [ModelArts](https://support.huaweicloud.com/modelarts/)
|
||||
|
||||
```bash
|
||||
# Train 8p with Ascend
|
||||
# (1) Perform a or b.
|
||||
# a. Set "enable_modelarts=True" on default_config.yaml file.
|
||||
# Set "distribute=True" on default_config.yaml file.
|
||||
# Set "dataset_path='/cache/data'" on default_config.yaml file.
|
||||
# Set "lr: 0.004" on default_config.yaml file.
|
||||
# (optional)Set "checkpoint_url='s3://dir_to_your_pretrained/'" on default_config.yaml file.
|
||||
# Set other parameters on default_config.yaml file you need.
|
||||
# b. Add "enable_modelarts=True" on the website UI interface.
|
||||
# Add "distribute=True" on the website UI interface.
|
||||
# Add "dataset_path=/cache/data" on the website UI interface.
|
||||
# Add "lr: 0.004" on the website UI interface.
|
||||
# (optional)Add "checkpoint_url='s3://dir_to_your_pretrained/'" on the website UI interface.
|
||||
# Add other parameters on the website UI interface.
|
||||
# (2) Prepare model code
|
||||
# (3) Upload or copy your pretrained model to S3 bucket if you want to finetune.
|
||||
# (4) Perform a or b. (suggested option a)
|
||||
# a. First, zip MindRecord dataset to one zip file.
|
||||
# Second, upload your zip dataset to S3 bucket.(you could also upload the origin mindrecord dataset, but it can be so slow.)
|
||||
# b. Upload the original dataset to S3 bucket.
|
||||
# (Data set conversion occurs during training process and costs a lot of time. it happens every time you train.)
|
||||
# (5) Set the code directory to "/path/centerface" on the website UI interface.
|
||||
# (6) Set the startup file to "train.py" on the website UI interface.
|
||||
# (7) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface.
|
||||
# (8) Create your job.
|
||||
#
|
||||
# Train 1p with Ascend
|
||||
# (1) Perform a or b.
|
||||
# a. Set "enable_modelarts=True" on default_config.yaml file.
|
||||
# Set "dataset_path='/cache/data'" on default_config.yaml file.
|
||||
# Set "lr: 0.004" on default_config.yaml file.
|
||||
# (optional)Set "checkpoint_url='s3://dir_to_your_pretrained/'" on default_config.yaml file.
|
||||
# Set other parameters on default_config.yaml file you need.
|
||||
# b. Add "enable_modelarts=True" on the website UI interface.
|
||||
# Add "dataset_path='/cache/data'" on the website UI interface.
|
||||
# Add "lr: 0.004" on the website UI interface.
|
||||
# (optional)Add "checkpoint_url='s3://dir_to_your_pretrained/'" on the website UI interface.
|
||||
# Add other parameters on the website UI interface.
|
||||
# (2) Prepare model code
|
||||
# (3) Upload or copy your pretrained model to S3 bucket if you want to finetune.
|
||||
# (4) Perform a or b. (suggested option a)
|
||||
# a. zip MindRecord dataset to one zip file.
|
||||
# Second, upload your zip dataset to S3 bucket.(you could also upload the origin mindrecord dataset, but it can be so slow.)
|
||||
# b. Upload the original dataset to S3 bucket.
|
||||
# (Data set conversion occurs during training process and costs a lot of time. it happens every time you train.)
|
||||
# (5) Set the code directory to "/path/centerface" on the website UI interface.
|
||||
# (6) Set the startup file to "train.py" on the website UI interface.
|
||||
# (7) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface.
|
||||
# (8) Create your job.
|
||||
#
|
||||
# Eval 1p with Ascend
|
||||
# (1) Perform a or b.
|
||||
# a. Set "enable_modelarts=True" on default_config.yaml file.
|
||||
# Set "checkpoint_url='s3://dir_to_your_trained_model/'" on base_config.yaml file.
|
||||
# Set "checkpoint='./centerface/centerface_trained.ckpt'" on default_config.yaml file.
|
||||
# Set "dataset_path='/cache/data'" on default_config.yaml file.
|
||||
# Set other parameters on default_config.yaml file you need.
|
||||
# b. Add "enable_modelarts=True" on the website UI interface.
|
||||
# Add "checkpoint_url='s3://dir_to_your_trained_model/'" on the website UI interface.
|
||||
# Add "checkpoint='./centerface/centerface_trained.ckpt'" on the website UI interface.
|
||||
# Add "dataset_path='/cache/data'" on the website UI interface.
|
||||
# Add other parameters on the website UI interface.
|
||||
# (2) Prepare model code
|
||||
# (3) Upload or copy your trained model to S3 bucket.
|
||||
# (4) Perform a or b. (suggested option a)
|
||||
# a. First, zip MindRecord dataset to one zip file.
|
||||
# Second, upload your zip dataset to S3 bucket.(you could also upload the origin mindrecord dataset, but it can be so slow.)
|
||||
# b. Upload the original dataset to S3 bucket.
|
||||
# (Data set conversion occurs during training process and costs a lot of time. it happens every time you train.)
|
||||
# (5) Set the code directory to "/path/centerface" on the website UI interface.
|
||||
# (6) Set the startup file to "eval.py" on the website UI interface.
|
||||
# (7) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface.
|
||||
# (8) Create your job.
|
||||
```
|
||||
|
||||
- Export on ModelArts (If you want to run in modelarts, please check the official documentation of [modelarts](https://support.huaweicloud.com/modelarts/), and you can start evaluating as follows)
|
||||
|
||||
1. Export s8 multiscale and flip with voc val dataset on modelarts, evaluating steps are as follows:
|
||||
|
||||
```python
|
||||
# (1) Perform a or b.
|
||||
# a. Set "enable_modelarts=True" on base_config.yaml file.
|
||||
# Set "file_name='centerface'" on base_config.yaml file.
|
||||
# Set "file_format='AIR'" on base_config.yaml file.
|
||||
# Set "checkpoint_url='/The path of checkpoint in S3/'" on beta_config.yaml file.
|
||||
# Set "ckpt_file='/cache/checkpoint_path/model.ckpt'" on base_config.yaml file.
|
||||
# Set other parameters on base_config.yaml file you need.
|
||||
# b. Add "enable_modelarts=True" on the website UI interface.
|
||||
# Add "file_name='centerface'" on the website UI interface.
|
||||
# Add "file_format='AIR'" on the website UI interface.
|
||||
# Add "checkpoint_url='/The path of checkpoint in S3/'" on the website UI interface.
|
||||
# Add "ckpt_file='/cache/checkpoint_path/model.ckpt'" on the website UI interface.
|
||||
# Add other parameters on the website UI interface.
|
||||
# (2) Upload or copy your trained model to S3 bucket.
|
||||
# (3) Set the code directory to "/path/centerface" on the website UI interface.
|
||||
# (4) Set the startup file to "export.py" on the website UI interface.
|
||||
# (5) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface.
|
||||
# (6) Create your job.
|
||||
```
|
||||
|
||||
# [Script Description](#contents)
|
||||
|
||||
## [Script and Sample Code](#contents)
|
||||
|
@ -192,7 +295,7 @@ sh eval_all.sh [ground_truth_path]
|
|||
├── postprocess.py // 310infer postprocess scripts
|
||||
├── README.md // descriptions about CenterFace
|
||||
├── ascend310_infer // application for 310 inference
|
||||
├─default_config.yaml // Training parameter profile
|
||||
├── default_config.yaml // Training parameter profile
|
||||
├── scripts
|
||||
│ ├──run_infer_310.sh // shell script for infer on ascend310
|
||||
│ ├──eval.sh // evaluate a single testing result
|
||||
|
@ -211,13 +314,13 @@ sh eval_all.sh [ground_truth_path]
|
|||
│ ├──mobile_v2.py // modified mobilenet_v2 backbone
|
||||
│ ├──utils.py // auxiliary functions for train, to log and preload
|
||||
│ ├──var_init.py // weight initialization
|
||||
│ ├──convert_weight_mobilenetv2.py // convert pretrained backbone to mindspore
|
||||
│ ├──convert_weight_centerface.py // convert pretrained backbone to mindspore
|
||||
│ ├──convert_weight.py // CenterFace model convert to mindspore
|
||||
| └──model_utils
|
||||
| ├──config.py // Processing configuration parameters
|
||||
| ├──device_adapter.py // Get cloud ID
|
||||
| ├──local_adapter.py // Get local ID
|
||||
| └ ──moxing_adapter.py // Parameter processing
|
||||
| ├──config.py // Processing configuration parameters
|
||||
| ├──device_adapter.py // Get cloud ID
|
||||
| ├──local_adapter.py // Get local ID
|
||||
| └ ──moxing_adapter.py // Parameter processing
|
||||
└── dependency // third party codes: MIT License
|
||||
├──extd // training dependency: data augmentation
|
||||
│ ├──utils
|
||||
|
@ -318,7 +421,7 @@ Major parameters eval.py as follows:
|
|||
step1: user need train a mobilenet_v2 model by mindspore or use the script below:
|
||||
|
||||
```python
|
||||
python torch_to_ms_mobilenetv2.py --ckpt_fn=./mobilenet_v2_key.ckpt --pt_fn=./mobilenet_v2-b0353104.pth --out_ckpt_fn=./mobilenet_v2.ckpt
|
||||
python torch_to_ms_centerface.py --ckpt_fn=./mobilenet_v2_key.ckpt --pt_fn=./mobilenet_v2-b0353104.pth --out_ckpt_fn=./mobilenet_v2.ckpt
|
||||
```
|
||||
|
||||
step2: prepare user rank_table
|
||||
|
|
|
@ -70,7 +70,7 @@ Dataset used: [COCO2017](<https://cocodataset.org/>)
|
|||
pip install mmcv==0.2.14
|
||||
```
|
||||
|
||||
And change the COCO_ROOT and other settings you need in `config_50.yaml、config_101.yaml or config_152.yaml`. The directory structure is as follows:
|
||||
And change the COCO_ROOT and other settings you need in `default_config.yaml、default_config_101.yaml or default_config_152.yaml`. The directory structure is as follows:
|
||||
|
||||
```path
|
||||
.
|
||||
|
@ -90,7 +90,7 @@ Dataset used: [COCO2017](<https://cocodataset.org/>)
|
|||
train2017/0000001.jpg 0,259,401,459,7 35,28,324,201,2 0,30,59,80,2
|
||||
```
|
||||
|
||||
Each row is an image annotation which split by space, the first column is a relative path of image, the others are box and class information of the format [xmin,ymin,xmax,ymax,class]. We read image from an image path joined by the `IMAGE_DIR`(dataset directory) and the relative path in `ANNO_PATH`(the TXT file path), `IMAGE_DIR` and `ANNO_PATH` are setting in `config_50.yaml、config_101.yaml or config_152.yaml`.
|
||||
Each row is an image annotation which split by space, the first column is a relative path of image, the others are box and class information of the format [xmin,ymin,xmax,ymax,class]. We read image from an image path joined by the `IMAGE_DIR`(dataset directory) and the relative path in `ANNO_PATH`(the TXT file path), `IMAGE_DIR` and `ANNO_PATH` are setting in `default_config_50.yaml、default_config_101.yaml or default_config_152.yaml`.
|
||||
|
||||
# Quick Start
|
||||
|
||||
|
@ -110,13 +110,13 @@ Note:
|
|||
python convert_checkpoint.py --ckpt_file=[BACKBONE_MODEL]
|
||||
|
||||
# standalone training
|
||||
sh run_standalone_train_ascend.sh [PRETRAINED_MODEL] [BACKBONE]
|
||||
sh run_standalone_train_ascend.sh [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
|
||||
# distributed training
|
||||
sh run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL] [BACKBONE]
|
||||
sh run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
|
||||
# eval
|
||||
sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE]
|
||||
sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
|
||||
# inference
|
||||
sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH]
|
||||
|
@ -130,13 +130,13 @@ sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH]
|
|||
python convert_checkpoint.py --ckpt_file=[BACKBONE_MODEL]
|
||||
|
||||
# standalone training
|
||||
sh run_standalone_train_gpu.sh [PRETRAINED_MODEL] [BACKBONE]
|
||||
sh run_standalone_train_gpu.sh [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
|
||||
# distributed training
|
||||
sh run_distribute_train_gpu.sh [DEVICE_NUM] [PRETRAINED_MODEL] [BACKBONE]
|
||||
sh run_distribute_train_gpu.sh [DEVICE_NUM] [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
|
||||
# eval
|
||||
sh run_eval_gpu.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE]
|
||||
sh run_eval_gpu.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
|
||||
```
|
||||
|
||||
|
@ -160,17 +160,17 @@ bash scripts/docker_start.sh fasterrcnn:20.1.0 [DATA_DIR] [MODEL_DIR]
|
|||
|
||||
```shell
|
||||
# standalone training
|
||||
sh run_standalone_train_ascend.sh [PRETRAINED_MODEL] [BACKBONE]
|
||||
sh run_standalone_train_ascend.sh [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
|
||||
# distributed training
|
||||
sh run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL] [BACKBONE]
|
||||
sh run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
```
|
||||
|
||||
4. Eval
|
||||
|
||||
```shell
|
||||
# eval
|
||||
sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE]
|
||||
sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
```
|
||||
|
||||
5. Inference
|
||||
|
@ -180,6 +180,109 @@ sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE]
|
|||
sh run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [ANN_FILE] [DEVICE_ID]
|
||||
```
|
||||
|
||||
- Running on [ModelArts](https://support.huaweicloud.com/modelarts/)
|
||||
|
||||
```bash
|
||||
# Train 8p with Ascend
|
||||
# (1) Perform a or b.
|
||||
# a. Set "enable_modelarts=True" on default_config.yaml file.
|
||||
# Set "distribute=True" on default_config.yaml file.
|
||||
# Set "dataset_path='/cache/data'" on default_config.yaml file.
|
||||
# Set "epoch_size: 20" on default_config.yaml file.
|
||||
# (optional)Set "checkpoint_url='s3://dir_to_your_pretrained/'" on default_config.yaml file.
|
||||
# Set other parameters on default_config.yaml file you need.
|
||||
# b. Add "enable_modelarts=True" on the website UI interface.
|
||||
# Add "distribute=True" on the website UI interface.
|
||||
# Add "dataset_path=/cache/data" on the website UI interface.
|
||||
# Add "epoch_size: 20" on the website UI interface.
|
||||
# (optional)Add "checkpoint_url='s3://dir_to_your_pretrained/'" on the website UI interface.
|
||||
# Add other parameters on the website UI interface.
|
||||
# (2) Prepare model code
|
||||
# (3) Upload or copy your pretrained model to S3 bucket if you want to finetune.
|
||||
# (4) Perform a or b. (suggested option a)
|
||||
# a. First, zip MindRecord dataset to one zip file.
|
||||
# Second, upload your zip dataset to S3 bucket.(you could also upload the origin mindrecord dataset, but it can be so slow.)
|
||||
# b. Upload the original dataset to S3 bucket.
|
||||
# (Data set conversion occurs during training process and costs a lot of time. it happens every time you train.)
|
||||
# (5) Set the code directory to "/path/faster_rcnn" on the website UI interface.
|
||||
# (6) Set the startup file to "train.py" on the website UI interface.
|
||||
# (7) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface.
|
||||
# (8) Create your job.
|
||||
#
|
||||
# Train 1p with Ascend
|
||||
# (1) Perform a or b.
|
||||
# a. Set "enable_modelarts=True" on default_config.yaml file.
|
||||
# Set "dataset_path='/cache/data'" on default_config.yaml file.
|
||||
# Set "epoch_size: 20" on default_config.yaml file.
|
||||
# (optional)Set "checkpoint_url='s3://dir_to_your_pretrained/'" on default_config.yaml file.
|
||||
# Set other parameters on default_config.yaml file you need.
|
||||
# b. Add "enable_modelarts=True" on the website UI interface.
|
||||
# Add "dataset_path='/cache/data'" on the website UI interface.
|
||||
# Add "epoch_size: 20" on the website UI interface.
|
||||
# (optional)Add "checkpoint_url='s3://dir_to_your_pretrained/'" on the website UI interface.
|
||||
# Add other parameters on the website UI interface.
|
||||
# (2) Prepare model code
|
||||
# (3) Upload or copy your pretrained model to S3 bucket if you want to finetune.
|
||||
# (4) Perform a or b. (suggested option a)
|
||||
# a. zip MindRecord dataset to one zip file.
|
||||
# Second, upload your zip dataset to S3 bucket.(you could also upload the origin mindrecord dataset, but it can be so slow.)
|
||||
# b. Upload the original dataset to S3 bucket.
|
||||
# (Data set conversion occurs during training process and costs a lot of time. it happens every time you train.)
|
||||
# (5) Set the code directory to "/path/faster_rcnn" on the website UI interface.
|
||||
# (6) Set the startup file to "train.py" on the website UI interface.
|
||||
# (7) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface.
|
||||
# (8) Create your job.
|
||||
#
|
||||
# Eval 1p with Ascend
|
||||
# (1) Perform a or b.
|
||||
# a. Set "enable_modelarts=True" on default_config.yaml file.
|
||||
# Set "checkpoint_url='s3://dir_to_your_trained_model/'" on base_config.yaml file.
|
||||
# Set "checkpoint='./faster_rcnn/faster_rcnn_trained.ckpt'" on default_config.yaml file.
|
||||
# Set "dataset_path='/cache/data'" on default_config.yaml file.
|
||||
# Set other parameters on default_config.yaml file you need.
|
||||
# b. Add "enable_modelarts=True" on the website UI interface.
|
||||
# Add "checkpoint_url='s3://dir_to_your_trained_model/'" on the website UI interface.
|
||||
# Add "checkpoint='./faster_rcnn/faster_rcnn_trained.ckpt'" on the website UI interface.
|
||||
# Add "dataset_path='/cache/data'" on the website UI interface.
|
||||
# Add other parameters on the website UI interface.
|
||||
# (2) Prepare model code
|
||||
# (3) Upload or copy your trained model to S3 bucket.
|
||||
# (4) Perform a or b. (suggested option a)
|
||||
# a. First, zip MindRecord dataset to one zip file.
|
||||
# Second, upload your zip dataset to S3 bucket.(you could also upload the origin mindrecord dataset, but it can be so slow.)
|
||||
# b. Upload the original dataset to S3 bucket.
|
||||
# (Data set conversion occurs during training process and costs a lot of time. it happens every time you train.)
|
||||
# (5) Set the code directory to "/path/faster_rcnn" on the website UI interface.
|
||||
# (6) Set the startup file to "eval.py" on the website UI interface.
|
||||
# (7) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface.
|
||||
# (8) Create your job.
|
||||
```
|
||||
|
||||
- Export on ModelArts (If you want to run in modelarts, please check the official documentation of [modelarts](https://support.huaweicloud.com/modelarts/), and you can start evaluating as follows)
|
||||
|
||||
1. Export s8 multiscale and flip with voc val dataset on modelarts, evaluating steps are as follows:
|
||||
|
||||
```python
|
||||
# (1) Perform a or b.
|
||||
# a. Set "enable_modelarts=True" on base_config.yaml file.
|
||||
# Set "file_name='faster_rcnn'" on base_config.yaml file.
|
||||
# Set "file_format='AIR'" on base_config.yaml file.
|
||||
# Set "checkpoint_url='/The path of checkpoint in S3/'" on beta_config.yaml file.
|
||||
# Set "ckpt_file='/cache/checkpoint_path/model.ckpt'" on base_config.yaml file.
|
||||
# Set other parameters on base_config.yaml file you need.
|
||||
# b. Add "enable_modelarts=True" on the website UI interface.
|
||||
# Add "file_name='faster_rcnn'" on the website UI interface.
|
||||
# Add "file_format='AIR'" on the website UI interface.
|
||||
# Add "checkpoint_url='/The path of checkpoint in S3/'" on the website UI interface.
|
||||
# Add "ckpt_file='/cache/checkpoint_path/model.ckpt'" on the website UI interface.
|
||||
# Add other parameters on the website UI interface.
|
||||
# (2) Upload or copy your trained model to S3 bucket.
|
||||
# (3) Set the code directory to "/path/faster_rcnn" on the website UI interface.
|
||||
# (4) Set the startup file to "export.py" on the website UI interface.
|
||||
# (5) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface.
|
||||
# (6) Create your job.
|
||||
```
|
||||
|
||||
# Script Description
|
||||
|
||||
## Script and Sample Code
|
||||
|
@ -187,43 +290,59 @@ sh run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [ANN_FILE] [DEVICE_ID]
|
|||
```shell
|
||||
.
|
||||
└─faster_rcnn
|
||||
├─README.md // descriptions about fasterrcnn
|
||||
├─ascend310_infer //application for 310 inference
|
||||
├─README.md // descriptions about fasterrcnn
|
||||
├─ascend310_infer //application for 310 inference
|
||||
├─scripts
|
||||
├─run_standalone_train_ascend.sh // shell script for standalone on ascend
|
||||
├─run_standalone_train_gpu.sh // shell script for standalone on GPU
|
||||
├─run_distribute_train_ascend.sh // shell script for distributed on ascend
|
||||
├─run_distribute_train_gpu.sh // shell script for distributed on GPU
|
||||
├─run_infer_310.sh // shell script for 310 inference
|
||||
└─run_eval_ascend.sh // shell script for eval on ascend
|
||||
└─run_eval_gpu.sh // shell script for eval on GPU
|
||||
├─run_standalone_train_ascend.sh // shell script for standalone on ascend
|
||||
├─run_standalone_train_gpu.sh // shell script for standalone on GPU
|
||||
├─run_distribute_train_ascend.sh // shell script for distributed on ascend
|
||||
├─run_distribute_train_gpu.sh // shell script for distributed on GPU
|
||||
├─run_infer_310.sh // shell script for 310 inference
|
||||
└─run_eval_ascend.sh // shell script for eval on ascend
|
||||
└─run_eval_gpu.sh // shell script for eval on GPU
|
||||
├─src
|
||||
├─FasterRcnn
|
||||
├─__init__.py // init file
|
||||
├─anchor_generator.py // anchor generator
|
||||
├─bbox_assign_sample.py // first stage sampler
|
||||
├─bbox_assign_sample_stage2.py // second stage sampler
|
||||
├─faster_rcnn_resnet.py // fasterrcnn network
|
||||
├─faster_rcnn_resnet50v1.py //fasterrcnn network for ResNet50v1.0
|
||||
├─fpn_neck.py //feature pyramid network
|
||||
├─proposal_generator.py // proposal generator
|
||||
├─rcnn.py // rcnn network
|
||||
├─resnet.py // backbone network
|
||||
├─resnet50v1.py // backbone network for ResNet50v1.0
|
||||
├─roi_align.py // roi align network
|
||||
└─rpn.py // region proposal network
|
||||
├─config.py // config for yaml parsing
|
||||
├─config_50.yaml // config for ResNet50
|
||||
├─config_101.yaml // config for ResNet101
|
||||
├─config_152.yaml // config for ResNet152
|
||||
├─dataset.py // create dataset and process dataset
|
||||
├─lr_schedule.py // learning ratio generator
|
||||
├─network_define.py // network define for fasterrcnn
|
||||
└─util.py // routine operation
|
||||
├─export.py // script to export AIR,MINDIR,ONNX model
|
||||
├─eval.py //eval scripts
|
||||
├─postprogress.py // post process for 310 inference
|
||||
└─train.py // train scripts
|
||||
├─__init__.py // init file
|
||||
├─anchor_generator.py // anchor generator
|
||||
├─bbox_assign_sample.py // first stage sampler
|
||||
├─bbox_assign_sample_stage2.py // second stage sampler
|
||||
├─faster_rcnn_resnet.py // fasterrcnn network
|
||||
├─faster_rcnn_resnet50v1.py //fasterrcnn network for ResNet50v1.0
|
||||
├─fpn_neck.py //feature pyramid network
|
||||
├─proposal_generator.py // proposal generator
|
||||
├─rcnn.py // rcnn network
|
||||
├─resnet.py // backbone network
|
||||
├─resnet50v1.py // backbone network for ResNet50v1.0
|
||||
├─roi_align.py // roi align network
|
||||
└─rpn.py // region proposal network
|
||||
├─dataset.py // create dataset and process dataset
|
||||
├─lr_schedule.py // learning ratio generator
|
||||
├─network_define.py // network define for fasterrcnn
|
||||
├─util.py // routine operation
|
||||
└─model_utils
|
||||
├─config.py // Processing configuration parameters
|
||||
├─device_adapter.py // Get cloud ID
|
||||
├─local_adapter.py // Get local ID
|
||||
└─moxing_adapter.py // Parameter processing
|
||||
├─default_config.yaml // config for ResNet50
|
||||
├─default_config_101.yaml // config for ResNet101
|
||||
├─default_config_152.yaml // config for ResNet152
|
||||
├─export.py // script to export AIR,MINDIR,ONNX model
|
||||
├─eval.py //eval scripts
|
||||
├─postprogress.py // post process for 310 inference
|
||||
└─train.py // train scripts
|
||||
```
|
||||
|
||||
```bash
|
||||
if backbone in ("resnet_v1.5_50", "resnet_v1_101", "resnet_v1_152"):
|
||||
from src.FasterRcnn.faster_rcnn_resnet import Faster_Rcnn_Resnet
|
||||
"resnet_v1.5_50" -> "./src/config_50.yaml"
|
||||
"resnet_v1_101" -> "./src/config_101.yaml"
|
||||
"resnet_v1_152" -> "./src/config_152.yaml"
|
||||
|
||||
elif backbone == "resnet_v1_50":
|
||||
from src.FasterRcnn.faster_rcnn_resnet50v1 import Faster_Rcnn_Resnet
|
||||
"resnet_v1_50" -> "./src/config_50.yaml"
|
||||
```
|
||||
|
||||
## Training Process
|
||||
|
@ -234,20 +353,20 @@ sh run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [ANN_FILE] [DEVICE_ID]
|
|||
|
||||
```shell
|
||||
# standalone training on ascend
|
||||
sh run_standalone_train_ascend.sh [PRETRAINED_MODEL]
|
||||
sh run_standalone_train_ascend.sh [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
|
||||
# distributed training on ascend
|
||||
sh run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL]
|
||||
sh run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
```
|
||||
|
||||
#### on GPU
|
||||
|
||||
```shell
|
||||
# standalone training on gpu
|
||||
sh run_standalone_train_gpu.sh [PRETRAINED_MODEL] [BACKBONE]
|
||||
sh run_standalone_train_gpu.sh [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
|
||||
# distributed training on gpu
|
||||
sh run_distribute_train_gpu.sh [DEVICE_NUM] [PRETRAINED_MODEL] [BACKBONE]
|
||||
sh run_distribute_train_gpu.sh [DEVICE_NUM] [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
```
|
||||
|
||||
Notes:
|
||||
|
@ -279,7 +398,7 @@ Notes:
|
|||
load_param_into_net(net, param_dict)
|
||||
```
|
||||
|
||||
3. The original dataset path needs to be in the config_50.yaml、config_101.yaml、config_152.yaml,you can select "coco_root" or "image_dir".
|
||||
3. The original dataset path needs to be in the default_config_50.yaml、default_config_101.yaml、default_config_152.yaml,you can select "coco_root" or "image_dir".
|
||||
|
||||
### Result
|
||||
|
||||
|
@ -304,14 +423,14 @@ epoch: 12 step: 7393, rpn_loss: 0.00691, rcnn_loss: 0.10168, rpn_cls_loss: 0.005
|
|||
|
||||
```shell
|
||||
# eval on ascend
|
||||
sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE]
|
||||
sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
```
|
||||
|
||||
#### on GPU
|
||||
|
||||
```shell
|
||||
# eval on GPU
|
||||
sh run_eval_gpu.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE]
|
||||
sh run_eval_gpu.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
```
|
||||
|
||||
> checkpoint can be produced in training process.
|
||||
|
@ -340,7 +459,7 @@ Eval result will be stored in the example path, whose folder name is "eval". Und
|
|||
## Model Export
|
||||
|
||||
```shell
|
||||
python export.py --ckpt_file [CKPT_PATH] --device_target [DEVICE_TARGET] --file_format[EXPORT_FORMAT] --backbone [BACKBONE]
|
||||
python export.py --ckpt_file [CKPT_PATH] --device_target [DEVICE_TARGET] --file_format[EXPORT_FORMAT] --backbone [BACKBONE] --coco_root [COCO_ROOT] --mindrecord_dir [MINDRECORD_DIR](option)
|
||||
```
|
||||
|
||||
`EXPORT_FORMAT` should be in ["AIR", "MINDIR"]
|
||||
|
|
|
@ -111,13 +111,13 @@ Faster R-CNN是一个两阶段目标检测网络,该网络采用RPN,可以
|
|||
python convert_checkpoint.py --ckpt_file=[BACKBONE_MODEL]
|
||||
|
||||
# 单机训练
|
||||
sh run_standalone_train_ascend.sh [PRETRAINED_MODEL] [BACKBONE]
|
||||
sh run_standalone_train_ascend.sh [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
|
||||
# 分布式训练
|
||||
sh run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL] [BACKBONE]
|
||||
sh run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
|
||||
# 评估
|
||||
sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE]
|
||||
sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
|
||||
#推理
|
||||
sh run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [ANN_FILE] [DEVICE_ID]
|
||||
|
@ -131,13 +131,13 @@ sh run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [ANN_FILE] [DEVICE_ID]
|
|||
python convert_checkpoint.py --ckpt_file=[BACKBONE_MODEL]
|
||||
|
||||
# 单机训练
|
||||
sh run_standalone_train_gpu.sh [PRETRAINED_MODEL] [BACKBONE]
|
||||
sh run_standalone_train_gpu.sh [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
|
||||
# 分布式训练
|
||||
sh run_distribute_train_gpu.sh [DEVICE_NUM] [PRETRAINED_MODEL] [BACKBONE]
|
||||
sh run_distribute_train_gpu.sh [DEVICE_NUM] [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
|
||||
# 评估
|
||||
sh run_eval_gpu.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE]
|
||||
sh run_eval_gpu.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
|
||||
```
|
||||
|
||||
|
@ -161,17 +161,17 @@ bash scripts/docker_start.sh fasterrcnn:20.1.0 [DATA_DIR] [MODEL_DIR]
|
|||
|
||||
```shell
|
||||
# 单机训练
|
||||
sh run_standalone_train_ascend.sh [PRETRAINED_MODEL] [BACKBONE]
|
||||
sh run_standalone_train_ascend.sh [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
|
||||
# 分布式训练
|
||||
sh run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL] [BACKBONE]
|
||||
sh run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
```
|
||||
|
||||
4. 评估
|
||||
|
||||
```shell
|
||||
# 评估
|
||||
sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE]
|
||||
sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
```
|
||||
|
||||
5. 推理
|
||||
|
@ -181,6 +181,109 @@ sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE]
|
|||
sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH] [DEVICE_ID]
|
||||
```
|
||||
|
||||
- 在 ModelArts 进行训练 (如果你想在modelarts上运行,可以参考以下文档 [modelarts](https://support.huaweicloud.com/modelarts/))
|
||||
|
||||
```python
|
||||
# 在 ModelArts 上使用8卡训练
|
||||
# (1) 执行a或者b
|
||||
# a. 在 default_config.yaml 文件中设置 "enable_modelarts=True"
|
||||
# 在 default_config.yaml 文件中设置 "distribute=True"
|
||||
# 在 default_config.yaml 文件中设置 "dataset_path='/cache/data'"
|
||||
# 在 default_config.yaml 文件中设置 "epoch_size: 20"
|
||||
# (可选)在 default_config.yaml 文件中设置 "checkpoint_url='s3://dir_to_your_pretrained/'"
|
||||
# 在 default_config.yaml 文件中设置 其他参数
|
||||
# b. 在网页上设置 "enable_modelarts=True"
|
||||
# 在网页上设置 "distribute=True"
|
||||
# 在网页上设置 "dataset_path=/cache/data"
|
||||
# 在网页上设置 "epoch_size: 20"
|
||||
# (可选)在网页上设置 "checkpoint_url='s3://dir_to_your_pretrained/'"
|
||||
# 在网页上设置 其他参数
|
||||
# (2) 准备模型代码
|
||||
# (3) 如果选择微调您的模型,请上传你的预训练模型到 S3 桶上
|
||||
# (4) 执行a或者b (推荐选择 a)
|
||||
# a. 第一, 将该数据集压缩为一个 ".zip" 文件。
|
||||
# 第二, 上传你的压缩数据集到 S3 桶上 (你也可以上传未压缩的数据集,但那可能会很慢。)
|
||||
# b. 上传原始数据集到 S3 桶上。
|
||||
# (数据集转换发生在训练过程中,需要花费较多的时间。每次训练的时候都会重新进行转换。)
|
||||
# (5) 在网页上设置你的代码路径为 "/path/faster_rcnn"
|
||||
# (6) 在网页上设置启动文件为 "train.py"
|
||||
# (7) 在网页上设置"训练数据集"、"训练输出文件路径"、"作业日志路径"等
|
||||
# (8) 创建训练作业
|
||||
#
|
||||
# 在 ModelArts 上使用单卡训练
|
||||
# (1) 执行a或者b
|
||||
# a. 在 default_config.yaml 文件中设置 "enable_modelarts=True"
|
||||
# 在 default_config.yaml 文件中设置 "dataset_path='/cache/data'"
|
||||
# 在 default_config.yaml 文件中设置 "epoch_size: 20"
|
||||
# (可选)在 default_config.yaml 文件中设置 "checkpoint_url='s3://dir_to_your_pretrained/'"
|
||||
# 在 default_config.yaml 文件中设置 其他参数
|
||||
# b. 在网页上设置 "enable_modelarts=True"
|
||||
# 在网页上设置 "dataset_path='/cache/data'"
|
||||
# 在网页上设置 "epoch_size: 20"
|
||||
# (可选)在网页上设置 "checkpoint_url='s3://dir_to_your_pretrained/'"
|
||||
# 在网页上设置 其他参数
|
||||
# (2) 准备模型代码
|
||||
# (3) 如果选择微调您的模型,上传你的预训练模型到 S3 桶上
|
||||
# (4) 执行a或者b (推荐选择 a)
|
||||
# a. 第一, 将该数据集压缩为一个 ".zip" 文件。
|
||||
# 第二, 上传你的压缩数据集到 S3 桶上 (你也可以上传未压缩的数据集,但那可能会很慢。)
|
||||
# b. 上传原始数据集到 S3 桶上。
|
||||
# (数据集转换发生在训练过程中,需要花费较多的时间。每次训练的时候都会重新进行转换。)
|
||||
# (5) 在网页上设置你的代码路径为 "/path/faster_rcnn"
|
||||
# (6) 在网页上设置启动文件为 "train.py"
|
||||
# (7) 在网页上设置"训练数据集"、"训练输出文件路径"、"作业日志路径"等
|
||||
# (8) 创建训练作业
|
||||
#
|
||||
# 在 ModelArts 上使用单卡验证
|
||||
# (1) 执行a或者b
|
||||
# a. 在 default_config.yaml 文件中设置 "enable_modelarts=True"
|
||||
# 在 default_config.yaml 文件中设置 "checkpoint_url='s3://dir_to_your_trained_model/'"
|
||||
# 在 default_config.yaml 文件中设置 "checkpoint='./faster_rcnn/faster_rcnn_trained.ckpt'"
|
||||
# 在 default_config.yaml 文件中设置 "dataset_path='/cache/data'"
|
||||
# 在 default_config.yaml 文件中设置 其他参数
|
||||
# b. 在网页上设置 "enable_modelarts=True"
|
||||
# 在网页上设置 "checkpoint_url='s3://dir_to_your_trained_model/'"
|
||||
# 在网页上设置 "checkpoint='./faster_rcnn/faster_rcnn_trained.ckpt'"
|
||||
# 在网页上设置 "dataset_path='/cache/data'"
|
||||
# 在网页上设置 其他参数
|
||||
# (2) 准备模型代码
|
||||
# (3) 上传你训练好的模型到 S3 桶上
|
||||
# (4) 执行a或者b (推荐选择 a)
|
||||
# a. 第一, 将该数据集压缩为一个 ".zip" 文件。
|
||||
# 第二, 上传你的压缩数据集到 S3 桶上 (你也可以上传未压缩的数据集,但那可能会很慢。)
|
||||
# b. 上传原始数据集到 S3 桶上。
|
||||
# (数据集转换发生在训练过程中,需要花费较多的时间。每次训练的时候都会重新进行转换。)
|
||||
# (5) 在网页上设置你的代码路径为 "/path/faster_rcnn"
|
||||
# (6) 在网页上设置启动文件为 "train.py"
|
||||
# (7) 在网页上设置"训练数据集"、"训练输出文件路径"、"作业日志路径"等
|
||||
# (8) 创建训练作业
|
||||
```
|
||||
|
||||
- 在 ModelArts 进行导出 (如果你想在modelarts上运行,可以参考以下文档 [modelarts](https://support.huaweicloud.com/modelarts/))
|
||||
|
||||
1. 使用voc val数据集评估多尺度和翻转s8。评估步骤如下:
|
||||
|
||||
```python
|
||||
# (1) 执行 a 或者 b.
|
||||
# a. 在 base_config.yaml 文件中设置 "enable_modelarts=True"
|
||||
# 在 base_config.yaml 文件中设置 "file_name='faster_rcnn'"
|
||||
# 在 base_config.yaml 文件中设置 "file_format='AIR'"
|
||||
# 在 base_config.yaml 文件中设置 "checkpoint_url='/The path of checkpoint in S3/'"
|
||||
# 在 base_config.yaml 文件中设置 "ckpt_file='/cache/checkpoint_path/model.ckpt'"
|
||||
# 在 base_config.yaml 文件中设置 其他参数
|
||||
# b. 在网页上设置 "enable_modelarts=True"
|
||||
# 在网页上设置 "file_name='faster_rcnn'"
|
||||
# 在网页上设置 "file_format='AIR'"
|
||||
# 在网页上设置 "checkpoint_url='/The path of checkpoint in S3/'"
|
||||
# 在网页上设置 "ckpt_file='/cache/checkpoint_path/model.ckpt'"
|
||||
# 在网页上设置 其他参数
|
||||
# (2) 上传你的预训练模型到 S3 桶上
|
||||
# (3) 在网页上设置你的代码路径为 "/path/faster_rcnn"
|
||||
# (4) 在网页上设置启动文件为 "export.py"
|
||||
# (5) 在网页上设置"训练数据集"、"训练输出文件路径"、"作业日志路径"等
|
||||
# (6) 创建训练作业
|
||||
```
|
||||
|
||||
# 脚本说明
|
||||
|
||||
## 脚本及样例代码
|
||||
|
@ -188,43 +291,47 @@ sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH] [DEVICE_ID]
|
|||
```shell
|
||||
.
|
||||
└─faster_rcnn
|
||||
├─README.md // Faster R-CNN相关说明
|
||||
├─ascend310_infer //实现310推理源代码
|
||||
├─README.md // Faster R-CNN相关说明
|
||||
├─ascend310_infer // 实现310推理源代码
|
||||
├─scripts
|
||||
├─run_standalone_train_ascend.sh // Ascend单机shell脚本
|
||||
├─run_standalone_train_ascend.sh // Ascend单机shell脚本
|
||||
├─run_standalone_train_gpu.sh // GPU单机shell脚本
|
||||
├─run_distribute_train_ascend.sh // Ascend分布式shell脚本
|
||||
├─run_distribute_train_ascend.sh // Ascend分布式shell脚本
|
||||
├─run_distribute_train_gpu.sh // GPU分布式shell脚本
|
||||
├─run_infer_310.sh // Ascend推理shell脚本
|
||||
└─run_eval_ascend.sh // Ascend评估shell脚本
|
||||
└─run_eval_gpu.sh // GPU评估shell脚本
|
||||
├─run_infer_310.sh // Ascend推理shell脚本
|
||||
└─run_eval_ascend.sh // Ascend评估shell脚本
|
||||
└─run_eval_gpu.sh // GPU评估shell脚本
|
||||
├─src
|
||||
├─FasterRcnn
|
||||
├─__init__.py // init文件
|
||||
├─anchor_generator.py // 锚点生成器
|
||||
├─bbox_assign_sample.py // 第一阶段采样器
|
||||
├─bbox_assign_sample_stage2.py // 第二阶段采样器
|
||||
├─faster_rcnn_resnet.py // Faster R-CNN网络
|
||||
├─faster_rcnn_resnet50v1.py //以Resnet50v1.0作为backbone的Faster R-CNN网络
|
||||
├─fpn_neck.py // 特征金字塔网络
|
||||
├─proposal_generator.py // 候选生成器
|
||||
├─rcnn.py // R-CNN网络
|
||||
├─resnet.py // 骨干网络
|
||||
├─resnet50v1.py // Resnet50v1.0骨干网络
|
||||
├─roi_align.py // ROI对齐网络
|
||||
└─rpn.py // 区域候选网络
|
||||
├─config.py // 读取yaml配置的config类
|
||||
├─config_50.yaml // Resnet50相关配置
|
||||
├─config_101.yaml // Resnet101相关配置
|
||||
├─config_152.yaml // Resnet152相关配置
|
||||
├─dataset.py // 创建并处理数据集
|
||||
├─lr_schedule.py // 学习率生成器
|
||||
├─network_define.py // Faster R-CNN网络定义
|
||||
└─util.py // 例行操作
|
||||
├─export.py // 导出 AIR,MINDIR模型的脚本
|
||||
├─eval.py // 评估脚本
|
||||
├─postprogress.py // 310推理后处理脚本
|
||||
└─train.py // 训练脚本
|
||||
├─__init__.py // init文件
|
||||
├─anchor_generator.py // 锚点生成器
|
||||
├─bbox_assign_sample.py // 第一阶段采样器
|
||||
├─bbox_assign_sample_stage2.py // 第二阶段采样器
|
||||
├─faster_rcnn_resnet.py // Faster R-CNN网络
|
||||
├─faster_rcnn_resnet50v1.py // 以Resnet50v1.0作为backbone的Faster R-CNN网络
|
||||
├─fpn_neck.py // 特征金字塔网络
|
||||
├─proposal_generator.py // 候选生成器
|
||||
├─rcnn.py // R-CNN网络
|
||||
├─resnet.py // 骨干网络
|
||||
├─resnet50v1.py // Resnet50v1.0骨干网络
|
||||
├─roi_align.py // ROI对齐网络
|
||||
└─rpn.py // 区域候选网络
|
||||
├─dataset.py // 创建并处理数据集
|
||||
├─lr_schedule.py // 学习率生成器
|
||||
├─network_define.py // Faster R-CNN网络定义
|
||||
├─util.py // 例行操作
|
||||
└─model_utils
|
||||
├─config.py // 获取.yaml配置参数
|
||||
├─device_adapter.py // 获取云上id
|
||||
├─local_adapter.py // 获取本地id
|
||||
└─moxing_adapter.py // 云上数据准备
|
||||
├─default_config.yaml // Resnet50相关配置
|
||||
├─default_config_101.yaml // Resnet101相关配置
|
||||
├─default_config_152.yaml // Resnet152相关配置
|
||||
├─export.py // 导出 AIR,MINDIR模型的脚本
|
||||
├─eval.py // 评估脚本
|
||||
├─postprogress.py // 310推理后处理脚本
|
||||
└─train.py // 训练脚本
|
||||
```
|
||||
|
||||
## 训练过程
|
||||
|
@ -235,20 +342,20 @@ sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH] [DEVICE_ID]
|
|||
|
||||
```shell
|
||||
# Ascend单机训练
|
||||
sh run_standalone_train_ascend.sh [PRETRAINED_MODEL] [BACKBONE]
|
||||
sh run_standalone_train_ascend.sh [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
|
||||
# Ascend分布式训练
|
||||
sh run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL] [BACKBONE]
|
||||
sh run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
```
|
||||
|
||||
#### 在GPU上运行
|
||||
|
||||
```shell
|
||||
# GPU单机训练
|
||||
sh run_standalone_train_gpu.sh [PRETRAINED_MODEL] [BACKBONE]
|
||||
sh run_standalone_train_gpu.sh [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
|
||||
# GPU分布式训练
|
||||
sh run_distribute_train_gpu.sh [DEVICE_NUM] [PRETRAINED_MODEL] [BACKBONE]
|
||||
sh run_distribute_train_gpu.sh [DEVICE_NUM] [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
```
|
||||
|
||||
Notes:
|
||||
|
@ -305,14 +412,14 @@ epoch: 12 step: 7393, rpn_loss: 0.00691, rcnn_loss: 0.10168, rpn_cls_loss: 0.005
|
|||
|
||||
```shell
|
||||
# Ascend评估
|
||||
sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE]
|
||||
sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
```
|
||||
|
||||
#### 在GPU上运行
|
||||
|
||||
```shell
|
||||
# GPU评估
|
||||
sh run_eval_gpu.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE]
|
||||
sh run_eval_gpu.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)
|
||||
```
|
||||
|
||||
> 在训练过程中生成检查点。
|
||||
|
@ -341,7 +448,7 @@ sh run_eval_gpu.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE]
|
|||
## 模型导出
|
||||
|
||||
```shell
|
||||
python export.py --ckpt_file [CKPT_PATH] --device_target [DEVICE_TARGET] --file_format[EXPORT_FORMAT] --backbone [BACKBONE]
|
||||
python export.py --ckpt_file [CKPT_PATH] --device_target [DEVICE_TARGET] --file_format[EXPORT_FORMAT] --backbone [BACKBONE] --coco_root [COCO_ROOT] --mindrecord_dir [MINDRECORD_DIR](option)
|
||||
```
|
||||
|
||||
`EXPORT_FORMAT` 可选 ["AIR", "MINDIR"]
|
||||
|
|
|
@ -1,18 +1,16 @@
|
|||
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ===========================================================================
|
||||
# Builtin Configurations(DO NOT CHANGE THESE CONFIGURATIONS unless you know exactly what you are doing)
|
||||
enable_modelarts: False
|
||||
data_url: ""
|
||||
train_url: ""
|
||||
checkpoint_url: ""
|
||||
data_path: "/cache/data"
|
||||
output_path: "/cache/train"
|
||||
load_path: "/cache/checkpoint_path"
|
||||
device_target: Ascend
|
||||
enable_profiling: False
|
||||
|
||||
# ==============================================================================
|
||||
# config
|
||||
img_width: 1280
|
||||
img_height: 768
|
||||
keep_ratio: True
|
||||
|
@ -20,7 +18,7 @@ flip_ratio: 0.5
|
|||
expand_ratio: 1.0
|
||||
|
||||
# anchor
|
||||
feature_shapes:
|
||||
feature_shapes:
|
||||
- [192, 320]
|
||||
- [96, 160]
|
||||
- [48, 80]
|
||||
|
@ -153,4 +151,65 @@ coco_classes: ['background', 'person', 'bicycle', 'car', 'motorcycle', 'airplane
|
|||
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
|
||||
'refrigerator', 'book', 'clock', 'vase', 'scissors',
|
||||
'teddy bear', 'hair drier', 'toothbrush']
|
||||
num_classes: 81
|
||||
num_classes: 81
|
||||
|
||||
# train.py FasterRcnn training
|
||||
run_distribute: False
|
||||
dataset: "coco"
|
||||
pre_trained: "/cache/train/fasterrcnn/faster_rcnn-12_7393.ckpt"
|
||||
device_id: 0
|
||||
device_num: 1
|
||||
rank_id: 0
|
||||
image_dir: ''
|
||||
anno_path: ''
|
||||
backbone: 'resnet_v1_50'
|
||||
|
||||
# eval.py FasterRcnn evaluation
|
||||
ann_file: '/cache/data/annotations/instances_val2017.json'
|
||||
checkpoint_path: "/cache/train/fasterrcnn/faster_rcnn-12_7393.ckpt"
|
||||
|
||||
# export.py fasterrcnn_export
|
||||
file_name: "faster_rcnn"
|
||||
file_format: "AIR"
|
||||
ckpt_file: "/cache/train/fasterrcnn/faster_rcnn-12_7393.ckpt"
|
||||
|
||||
# postprocess ("./src/config_50.yaml")
|
||||
#ann_file: ''
|
||||
result_path: ''
|
||||
|
||||
---
|
||||
# Config description for each option
|
||||
enable_modelarts: 'Whether training on modelarts, default: False'
|
||||
data_url: 'Dataset url for obs'
|
||||
train_url: 'Training output url for obs'
|
||||
data_path: 'Dataset path for local'
|
||||
output_path: 'Training output path for local'
|
||||
result_dir: "result files path."
|
||||
label_dir: "image file path."
|
||||
|
||||
device_target: "device where the code will be implemented, default is Ascend"
|
||||
file_name: "output file name."
|
||||
dataset: "Dataset, either cifar10 or imagenet2012"
|
||||
parameter_server: 'Run parameter server train'
|
||||
width: 'input width'
|
||||
height: 'input height'
|
||||
enable_profiling: 'Whether enable profiling while training, default: False'
|
||||
only_create_dataset: 'If set it true, only create Mindrecord, default is false.'
|
||||
run_distribute: 'Run distribute, default is false.'
|
||||
do_train: 'Do train or not, default is true.'
|
||||
do_eval: 'Do eval or not, default is false.'
|
||||
pre_trained: 'Pretrained checkpoint path'
|
||||
device_id: 'Device id, default is 0.'
|
||||
device_num: 'Use device nums, default is 1.'
|
||||
rank_id: 'Rank id, default is 0.'
|
||||
file_format: 'file format'
|
||||
ann_file: "Ann file, default is val.json."
|
||||
checkpoint_path: "Checkpoint file path."
|
||||
ckpt_file: 'fasterrcnn ckpt file.'
|
||||
result_path: "result file path."
|
||||
backbone: "backbone network name, options:resnet_v1_50, resnet_v1.5_50, resnet_v1_101, resnet_v1_152"
|
||||
|
||||
---
|
||||
device_target: ['Ascend', 'GPU', 'CPU']
|
||||
file_format: ["AIR", "ONNX", "MINDIR"]
|
||||
dataset_name: ["cifar10", "imagenet2012"]
|
|
@ -1,17 +1,16 @@
|
|||
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ===========================================================================
|
||||
# Builtin Configurations(DO NOT CHANGE THESE CONFIGURATIONS unless you know exactly what you are doing)
|
||||
enable_modelarts: False
|
||||
data_url: ""
|
||||
train_url: ""
|
||||
checkpoint_url: ""
|
||||
data_path: "/cache/data"
|
||||
output_path: "/cache/train"
|
||||
load_path: "/cache/checkpoint_path"
|
||||
device_target: Ascend
|
||||
enable_profiling: False
|
||||
|
||||
# ==============================================================================
|
||||
# config
|
||||
|
||||
img_width: 1280
|
||||
img_height: 768
|
||||
|
@ -20,7 +19,7 @@ flip_ratio: 0.5
|
|||
expand_ratio: 1.0
|
||||
|
||||
# anchor
|
||||
feature_shapes:
|
||||
feature_shapes:
|
||||
- [192, 320]
|
||||
- [96, 160]
|
||||
- [48, 80]
|
||||
|
@ -154,3 +153,64 @@ coco_classes: ['background', 'person', 'bicycle', 'car', 'motorcycle', 'airplane
|
|||
'refrigerator', 'book', 'clock', 'vase', 'scissors',
|
||||
'teddy bear', 'hair drier', 'toothbrush']
|
||||
num_classes: 81
|
||||
|
||||
# train.py FasterRcnn training
|
||||
run_distribute: False
|
||||
dataset: "coco"
|
||||
pre_trained: "/cache/train/fasterrcnn/faster_rcnn-12_7393.ckpt"
|
||||
device_id: 0
|
||||
device_num: 1
|
||||
rank_id: 0
|
||||
image_dir: ''
|
||||
anno_path: ''
|
||||
backbone: 'resnet_v1_50'
|
||||
|
||||
# eval.py FasterRcnn evaluation
|
||||
ann_file: '/cache/data/annotations/instances_val2017.json'
|
||||
checkpoint_path: "/cache/train/fasterrcnn/faster_rcnn-12_7393.ckpt"
|
||||
|
||||
# export.py fasterrcnn_export
|
||||
file_name: "faster_rcnn"
|
||||
file_format: "AIR"
|
||||
ckpt_file: "/cache/train/fasterrcnn/faster_rcnn-12_7393.ckpt"
|
||||
|
||||
# postprocess ("./src/config_50.yaml")
|
||||
#ann_file: ''
|
||||
result_path: ''
|
||||
|
||||
---
|
||||
# Config description for each option
|
||||
enable_modelarts: 'Whether training on modelarts, default: False'
|
||||
data_url: 'Dataset url for obs'
|
||||
train_url: 'Training output url for obs'
|
||||
data_path: 'Dataset path for local'
|
||||
output_path: 'Training output path for local'
|
||||
result_dir: "result files path."
|
||||
label_dir: "image file path."
|
||||
|
||||
device_target: "device where the code will be implemented, default is Ascend"
|
||||
file_name: "output file name."
|
||||
dataset: "Dataset, either cifar10 or imagenet2012"
|
||||
parameter_server: 'Run parameter server train'
|
||||
width: 'input width'
|
||||
height: 'input height'
|
||||
enable_profiling: 'Whether enable profiling while training, default: False'
|
||||
only_create_dataset: 'If set it true, only create Mindrecord, default is false.'
|
||||
run_distribute: 'Run distribute, default is false.'
|
||||
do_train: 'Do train or not, default is true.'
|
||||
do_eval: 'Do eval or not, default is false.'
|
||||
pre_trained: 'Pretrained checkpoint path'
|
||||
device_id: 'Device id, default is 0.'
|
||||
device_num: 'Use device nums, default is 1.'
|
||||
rank_id: 'Rank id, default is 0.'
|
||||
file_format: 'file format'
|
||||
ann_file: "Ann file, default is val.json."
|
||||
checkpoint_path: "Checkpoint file path."
|
||||
ckpt_file: 'fasterrcnn ckpt file.'
|
||||
result_path: "result file path."
|
||||
backbone: "backbone network name, options:resnet_v1_50, resnet_v1.5_50, resnet_v1_101, resnet_v1_152"
|
||||
|
||||
---
|
||||
device_target: ['Ascend', 'GPU', 'CPU']
|
||||
file_format: ["AIR", "ONNX", "MINDIR"]
|
||||
dataset_name: ["cifar10", "imagenet2012"]
|
|
@ -1,17 +1,16 @@
|
|||
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ===========================================================================
|
||||
# Builtin Configurations(DO NOT CHANGE THESE CONFIGURATIONS unless you know exactly what you are doing)
|
||||
enable_modelarts: False
|
||||
data_url: ""
|
||||
train_url: ""
|
||||
checkpoint_url: ""
|
||||
data_path: "/cache/data"
|
||||
output_path: "/cache/train"
|
||||
load_path: "/cache/checkpoint_path"
|
||||
device_target: Ascend
|
||||
enable_profiling: False
|
||||
|
||||
# ==============================================================================
|
||||
# config
|
||||
|
||||
img_width: 1280
|
||||
img_height: 768
|
||||
|
@ -20,7 +19,7 @@ flip_ratio: 0.5
|
|||
expand_ratio: 1.0
|
||||
|
||||
# anchor
|
||||
feature_shapes:
|
||||
feature_shapes:
|
||||
- [192, 320]
|
||||
- [96, 160]
|
||||
- [48, 80]
|
||||
|
@ -153,4 +152,65 @@ coco_classes: ['background', 'person', 'bicycle', 'car', 'motorcycle', 'airplane
|
|||
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
|
||||
'refrigerator', 'book', 'clock', 'vase', 'scissors',
|
||||
'teddy bear', 'hair drier', 'toothbrush']
|
||||
num_classes: 81
|
||||
num_classes: 81
|
||||
|
||||
# train.py FasterRcnn training
|
||||
run_distribute: False
|
||||
dataset: "coco"
|
||||
pre_trained: "/cache/train/fasterrcnn/faster_rcnn-12_7393.ckpt"
|
||||
device_id: 0
|
||||
device_num: 1
|
||||
rank_id: 0
|
||||
image_dir: ''
|
||||
anno_path: ''
|
||||
backbone: 'resnet_v1_50'
|
||||
|
||||
# eval.py FasterRcnn evaluation
|
||||
ann_file: '/cache/data/annotations/instances_val2017.json'
|
||||
checkpoint_path: "/cache/train/fasterrcnn/faster_rcnn-12_7393.ckpt"
|
||||
|
||||
# export.py fasterrcnn_export
|
||||
file_name: "faster_rcnn"
|
||||
file_format: "AIR"
|
||||
ckpt_file: "/cache/train/fasterrcnn/faster_rcnn-12_7393.ckpt"
|
||||
|
||||
# postprocess ("./src/config_50.yaml")
|
||||
#ann_file: ''
|
||||
result_path: ''
|
||||
|
||||
---
|
||||
# Config description for each option
|
||||
enable_modelarts: 'Whether training on modelarts, default: False'
|
||||
data_url: 'Dataset url for obs'
|
||||
train_url: 'Training output url for obs'
|
||||
data_path: 'Dataset path for local'
|
||||
output_path: 'Training output path for local'
|
||||
result_dir: "result files path."
|
||||
label_dir: "image file path."
|
||||
|
||||
device_target: "device where the code will be implemented, default is Ascend"
|
||||
file_name: "output file name."
|
||||
dataset: "Dataset, either cifar10 or imagenet2012"
|
||||
parameter_server: 'Run parameter server train'
|
||||
width: 'input width'
|
||||
height: 'input height'
|
||||
enable_profiling: 'Whether enable profiling while training, default: False'
|
||||
only_create_dataset: 'If set it true, only create Mindrecord, default is false.'
|
||||
run_distribute: 'Run distribute, default is false.'
|
||||
do_train: 'Do train or not, default is true.'
|
||||
do_eval: 'Do eval or not, default is false.'
|
||||
pre_trained: 'Pretrained checkpoint path'
|
||||
device_id: 'Device id, default is 0.'
|
||||
device_num: 'Use device nums, default is 1.'
|
||||
rank_id: 'Rank id, default is 0.'
|
||||
file_format: 'file format'
|
||||
ann_file: "Ann file, default is val.json."
|
||||
checkpoint_path: "Checkpoint file path."
|
||||
ckpt_file: 'fasterrcnn ckpt file.'
|
||||
result_path: "result file path."
|
||||
backbone: "backbone network name, options:resnet_v1_50, resnet_v1.5_50, resnet_v1_101, resnet_v1_152"
|
||||
|
||||
---
|
||||
device_target: ['Ascend', 'GPU', 'CPU']
|
||||
file_format: ["AIR", "ONNX", "MINDIR"]
|
||||
dataset_name: ["cifar10", "imagenet2012"]
|
|
@ -15,7 +15,6 @@
|
|||
|
||||
"""Evaluation for FasterRcnn"""
|
||||
import os
|
||||
import argparse
|
||||
import time
|
||||
import numpy as np
|
||||
from pycocotools.coco import COCO
|
||||
|
@ -26,34 +25,17 @@ from mindspore.common import set_seed, Parameter
|
|||
|
||||
from src.dataset import data_to_mindrecord_byte_image, create_fasterrcnn_dataset
|
||||
from src.util import coco_eval, bbox2result_1image, results2json
|
||||
import src.config as cfg
|
||||
from src.model_utils.config import config
|
||||
from src.model_utils.moxing_adapter import moxing_wrapper
|
||||
from src.model_utils.device_adapter import get_device_id
|
||||
|
||||
|
||||
set_seed(1)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target, device_id=get_device_id())
|
||||
|
||||
parser = argparse.ArgumentParser(description="FasterRcnn evaluation")
|
||||
parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.")
|
||||
parser.add_argument("--ann_file", type=str, default="val.json", help="Ann file, default is val.json.")
|
||||
parser.add_argument("--checkpoint_path", type=str, required=True, help="Checkpoint file path.")
|
||||
parser.add_argument("--device_target", type=str, default="Ascend",
|
||||
help="device where the code will be implemented, default is Ascend")
|
||||
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
|
||||
parser.add_argument("--backbone", type=str, required=True, \
|
||||
help="backbone network name, options:resnet_v1_50, resnet_v1.5_50, resnet_v1_101, resnet_v1_152")
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=args_opt.device_id)
|
||||
|
||||
if args_opt.backbone in ("resnet_v1.5_50", "resnet_v1_101", "resnet_v1_152"):
|
||||
if config.backbone in ("resnet_v1.5_50", "resnet_v1_101", "resnet_v1_152"):
|
||||
from src.FasterRcnn.faster_rcnn_resnet import Faster_Rcnn_Resnet
|
||||
if args_opt.backbone == "resnet_v1.5_50":
|
||||
config = cfg.get_config("./src/config_50.yaml")
|
||||
elif args_opt.backbone == "resnet_v1_101":
|
||||
config = cfg.get_config("./src/config_101.yaml")
|
||||
elif args_opt.backbone == "resnet_v1_152":
|
||||
config = cfg.get_config("./src/config_152.yaml")
|
||||
|
||||
elif args_opt.backbone == "resnet_v1_50":
|
||||
config = cfg.get_config("./src/config_50.yaml")
|
||||
elif config.backbone == "resnet_v1_50":
|
||||
from src.FasterRcnn.faster_rcnn_resnet50v1 import Faster_Rcnn_Resnet
|
||||
|
||||
def fasterrcnn_eval(dataset_path, ckpt_path, ann_file):
|
||||
|
@ -61,7 +43,7 @@ def fasterrcnn_eval(dataset_path, ckpt_path, ann_file):
|
|||
ds = create_fasterrcnn_dataset(config, dataset_path, batch_size=config.test_batch_size, is_training=False)
|
||||
net = Faster_Rcnn_Resnet(config)
|
||||
param_dict = load_checkpoint(ckpt_path)
|
||||
if args_opt.device_target == "GPU":
|
||||
if config.device_target == "GPU":
|
||||
for key, value in param_dict.items():
|
||||
tensor = value.asnumpy().astype(np.float32)
|
||||
param_dict[key] = Parameter(tensor, key)
|
||||
|
@ -125,7 +107,13 @@ def fasterrcnn_eval(dataset_path, ckpt_path, ann_file):
|
|||
coco_eval(result_files, eval_types, dataset_coco, single_result=True)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
def modelarts_pre_process():
|
||||
pass
|
||||
# config.ckpt_path = os.path.join(config.output_path, str(get_rank_id()), config.checkpoint_path)
|
||||
|
||||
@moxing_wrapper(pre_process=modelarts_pre_process)
|
||||
def eval_fasterrcnn():
|
||||
""" eval_fasterrcnn """
|
||||
prefix = "FasterRcnn_eval.mindrecord"
|
||||
mindrecord_dir = config.mindrecord_dir
|
||||
mindrecord_file = os.path.join(mindrecord_dir, prefix)
|
||||
|
@ -134,7 +122,7 @@ if __name__ == '__main__':
|
|||
if not os.path.exists(mindrecord_file):
|
||||
if not os.path.isdir(mindrecord_dir):
|
||||
os.makedirs(mindrecord_dir)
|
||||
if args_opt.dataset == "coco":
|
||||
if config.dataset == "coco":
|
||||
if os.path.isdir(config.coco_root):
|
||||
print("Create Mindrecord. It may take some time.")
|
||||
data_to_mindrecord_byte_image(config, "coco", False, prefix, file_num=1)
|
||||
|
@ -151,4 +139,7 @@ if __name__ == '__main__':
|
|||
|
||||
print("CHECKING MINDRECORD FILES DONE!")
|
||||
print("Start Eval!")
|
||||
fasterrcnn_eval(mindrecord_file, args_opt.checkpoint_path, args_opt.ann_file)
|
||||
fasterrcnn_eval(mindrecord_file, config.checkpoint_path, config.ann_file)
|
||||
|
||||
if __name__ == '__main__':
|
||||
eval_fasterrcnn()
|
||||
|
|
|
@ -13,45 +13,33 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""export checkpoint file into air, onnx, mindir models"""
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore import Tensor, load_checkpoint, load_param_into_net, export, context
|
||||
import src.config as cfg
|
||||
from src.model_utils.config import config
|
||||
from src.model_utils.moxing_adapter import moxing_wrapper
|
||||
from src.model_utils.device_adapter import get_device_id
|
||||
|
||||
parser = argparse.ArgumentParser(description='fasterrcnn_export')
|
||||
parser.add_argument("--device_id", type=int, default=0, help="Device id")
|
||||
parser.add_argument("--file_name", type=str, default="faster_rcnn", help="output file name.")
|
||||
parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
|
||||
parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
|
||||
help="device target")
|
||||
parser.add_argument('--ckpt_file', type=str, default='', help='fasterrcnn ckpt file.')
|
||||
parser.add_argument("--backbone", type=str, required=True, \
|
||||
help="backbone network name, options:resnet_v1_50, resnet_v1.5_50, resnet_v1_101, resnet_v1_152")
|
||||
args = parser.parse_args()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
|
||||
if args.device_target == "Ascend":
|
||||
context.set_context(device_id=args.device_id)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target)
|
||||
if config.device_target == "Ascend":
|
||||
context.set_context(device_id=get_device_id())
|
||||
|
||||
if args.backbone in ("resnet_v1.5_50", "resnet_v1_101", "resnet_v1_152"):
|
||||
if config.backbone in ("resnet_v1.5_50", "resnet_v1_101", "resnet_v1_152"):
|
||||
from src.FasterRcnn.faster_rcnn_resnet import FasterRcnn_Infer
|
||||
if args.backbone == "resnet_v1.5_50":
|
||||
config = cfg.get_config("./src/config_50.yaml")
|
||||
elif args.backbone == "resnet_v1_101":
|
||||
config = cfg.get_config("./src/config_101.yaml")
|
||||
elif args.backbone == "resnet_v1_152":
|
||||
config = cfg.get_config("./src/config_152.yaml")
|
||||
|
||||
elif args.backbone == "resnet_v1_50":
|
||||
config = cfg.get_config("./src/config_50.yaml")
|
||||
elif config.backbone == "resnet_v1_50":
|
||||
from src.FasterRcnn.faster_rcnn_resnet50v1 import FasterRcnn_Infer
|
||||
|
||||
if __name__ == '__main__':
|
||||
def modelarts_pre_process():
|
||||
pass
|
||||
|
||||
@moxing_wrapper(pre_process=modelarts_pre_process)
|
||||
def export_fasterrcnn():
|
||||
""" export_fasterrcnn """
|
||||
net = FasterRcnn_Infer(config=config)
|
||||
|
||||
param_dict = load_checkpoint(args.ckpt_file)
|
||||
param_dict = load_checkpoint(config.ckpt_file)
|
||||
|
||||
param_dict_new = {}
|
||||
for key, value in param_dict.items():
|
||||
|
@ -66,4 +54,7 @@ if __name__ == '__main__':
|
|||
img = Tensor(np.zeros([config.test_batch_size, 3, config.img_height, config.img_width]), mstype.float32)
|
||||
img_metas = Tensor(np.random.uniform(0.0, 1.0, size=[config.test_batch_size, 4]), mstype.float32)
|
||||
|
||||
export(net, img, img_metas, file_name=args.file_name, file_format=args.file_format)
|
||||
export(net, img, img_metas, file_name=config.file_name, file_format=config.file_format)
|
||||
|
||||
if __name__ == '__main__':
|
||||
export_fasterrcnn()
|
||||
|
|
|
@ -13,25 +13,13 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""hub config."""
|
||||
import argparse
|
||||
import src.config as cfg
|
||||
|
||||
parser = argparse.ArgumentParser(description="FasterRcnn")
|
||||
parser.add_argument("--backbone", type=str, required=True, \
|
||||
help="backbone network name, options:resnet_v1_50, resnet_v1.5_50, resnet_v1_101, resnet_v1_152")
|
||||
args_opt = parser.parse_args()
|
||||
from src.model_utils.config import config
|
||||
|
||||
if args_opt.backbone in ("resnet_v1.5_50", "resnet_v1_101", "resnet_v1_152"):
|
||||
|
||||
if config.backbone in ("resnet_v1.5_50", "resnet_v1_101", "resnet_v1_152"):
|
||||
from src.FasterRcnn.faster_rcnn_resnet import Faster_Rcnn_Resnet
|
||||
if args_opt.backbone == "resnet_v1.5_50":
|
||||
config = cfg.get_config("./src/config_50.yaml")
|
||||
elif args_opt.backbone == "resnet_v1_101":
|
||||
config = cfg.get_config("./src/config_101.yaml")
|
||||
elif args_opt.backbone == "resnet_v1_152":
|
||||
config = cfg.get_config("./src/config_152.yaml")
|
||||
|
||||
elif args_opt.backbone == "resnet_v1_50":
|
||||
config = cfg.get_config("./src/config_50.yaml")
|
||||
elif config.backbone == "resnet_v1_50":
|
||||
from src.FasterRcnn.faster_rcnn_resnet50v1 import Faster_Rcnn_Resnet
|
||||
|
||||
def create_network(name, *args, **kwargs):
|
||||
|
|
|
@ -14,22 +14,21 @@
|
|||
# ============================================================================
|
||||
"""post process for 310 inference"""
|
||||
import os
|
||||
import argparse
|
||||
import numpy as np
|
||||
from pycocotools.coco import COCO
|
||||
|
||||
from src.util import coco_eval, bbox2result_1image, results2json
|
||||
import src.config as cfg
|
||||
from src.model_utils.config import config
|
||||
from src.model_utils.moxing_adapter import moxing_wrapper
|
||||
|
||||
|
||||
dst_width = 1280
|
||||
dst_height = 768
|
||||
|
||||
parser = argparse.ArgumentParser(description="FasterRcnn inference")
|
||||
parser.add_argument("--ann_file", type=str, required=True, help="ann file.")
|
||||
parser.add_argument("--result_path", type=str, required=True, help="result file path.")
|
||||
args = parser.parse_args()
|
||||
config = cfg.get_config("./src/config_50.yaml")
|
||||
def modelarts_pre_process():
|
||||
pass
|
||||
|
||||
@moxing_wrapper(pre_process=modelarts_pre_process)
|
||||
def get_eval_result(ann_file, result_path):
|
||||
""" get evaluation result of faster rcnn"""
|
||||
max_num = 128
|
||||
|
@ -72,4 +71,4 @@ def get_eval_result(ann_file, result_path):
|
|||
coco_eval(result_files, eval_types, dataset_coco, single_result=False)
|
||||
|
||||
if __name__ == '__main__':
|
||||
get_eval_result(args.ann_file, args.result_path)
|
||||
get_eval_result(config.ann_file, config.result_path)
|
||||
|
|
|
@ -14,9 +14,9 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ $# -ne 3 ]
|
||||
if [ $# -le 3 ]
|
||||
then
|
||||
echo "Usage: sh run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_PATH] [BACKBONE]"
|
||||
echo "Usage: sh run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_PATH] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
@ -35,7 +35,11 @@ get_real_path(){
|
|||
}
|
||||
|
||||
PATH1=$(get_real_path $1)
|
||||
PATH2=$(get_real_path $2)
|
||||
PATH3=$(get_real_path $4)
|
||||
echo $PATH1
|
||||
echo $PATH2
|
||||
echo $PATH3
|
||||
|
||||
if [ ! -f $PATH1 ]
|
||||
then
|
||||
|
@ -43,14 +47,48 @@ then
|
|||
exit 1
|
||||
fi
|
||||
|
||||
PATH2=$(get_real_path $2)
|
||||
echo $PATH2
|
||||
if [ ! -f $PATH2 ]
|
||||
then
|
||||
echo "error: PRETRAINED_PATH=$PATH2 is not a file"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ ! -d $PATH3 ]
|
||||
then
|
||||
echo "error: COCO_ROOT=$PATH3 is not a dir"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
mindrecord_dir=$PATH3/MindRecord_COCO_TRAIN/
|
||||
if [ $# -eq 5 ]
|
||||
then
|
||||
mindrecord_dir=$(get_real_path $5)
|
||||
if [ ! -d $mindrecord_dir ]
|
||||
then
|
||||
echo "error: mindrecord_dir=$mindrecord_dir is not a dir"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
echo $mindrecord_dir
|
||||
|
||||
BASE_PATH=$(cd ./"`dirname $0`" || exit; pwd)
|
||||
if [ $# -ge 1 ]; then
|
||||
if [ $3 == 'resnet_v1.5_50' ]; then
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config.yaml"
|
||||
elif [ $3 == 'resnet_v1_101' ]; then
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config_101.yaml"
|
||||
elif [ $3 == 'resnet_v1_152' ]; then
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config_152.yaml"
|
||||
elif [ $3 == 'resnet_v1_50' ]; then
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config.yaml"
|
||||
else
|
||||
echo "Unrecognized parameter"
|
||||
exit 1
|
||||
fi
|
||||
else
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config.yaml"
|
||||
fi
|
||||
|
||||
ulimit -u unlimited
|
||||
export HCCL_CONNECT_TIMEOUT=600
|
||||
export DEVICE_NUM=8
|
||||
|
@ -64,11 +102,13 @@ do
|
|||
rm -rf ./train_parallel$i
|
||||
mkdir ./train_parallel$i
|
||||
cp ../*.py ./train_parallel$i
|
||||
cp ../*.yaml ./train_parallel$i
|
||||
cp *.sh ./train_parallel$i
|
||||
cp -r ../src ./train_parallel$i
|
||||
cd ./train_parallel$i || exit
|
||||
echo "start training for rank $RANK_ID, device $DEVICE_ID"
|
||||
env > env.log
|
||||
python train.py --device_id=$i --rank_id=$i --run_distribute=True --device_num=$DEVICE_NUM --pre_trained=$PATH2 --backbone=$3 &> log &
|
||||
python train.py --config_path=$CONFIG_FILE --coco_root=$PATH3 --mindrecord_dir=$mindrecord_dir --device_id=$i \
|
||||
--rank_id=$i --run_distribute=True --device_num=$DEVICE_NUM --pre_trained=$PATH2 --backbone=$3 &> log &
|
||||
cd ..
|
||||
done
|
|
@ -16,14 +16,14 @@
|
|||
|
||||
echo "=============================================================================================================="
|
||||
echo "Please run the script as: "
|
||||
echo "sh run_distribute_train_gpu.sh DEVICE_NUM PRETRAINED_PATH BACKBONE"
|
||||
echo "for example: sh run_distribute_train_gpu.sh 8 /path/pretrain.ckpt resnet_v1_50"
|
||||
echo "sh run_distribute_train_gpu.sh DEVICE_NUM PRETRAINED_PATH BACKBONE COCO_ROOT MINDRECORD_DIR(option)"
|
||||
echo "for example: sh run_distribute_train_gpu.sh 8 /path/pretrain.ckpt resnet_v1_50 cocodataset mindrecord_dir(option)"
|
||||
echo "It is better to use absolute path."
|
||||
echo "=============================================================================================================="
|
||||
|
||||
if [ $# != 3 ]
|
||||
if [ $# -le 3 ]
|
||||
then
|
||||
echo "Usage: sh run_distribute_train_gpu.sh [DEVICE_NUM] [PRETRAINED_PATH] [BACKBONE]"
|
||||
echo "Usage: sh run_distribute_train_gpu.sh [DEVICE_NUM] [PRETRAINED_PATH] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
@ -33,19 +33,62 @@ then
|
|||
exit 1
|
||||
fi
|
||||
|
||||
get_real_path(){
|
||||
if [ "${1:0:1}" == "/" ]; then
|
||||
echo "$1"
|
||||
else
|
||||
echo "$(realpath -m $PWD/$1)"
|
||||
fi
|
||||
}
|
||||
|
||||
rm -rf run_distribute_train
|
||||
mkdir run_distribute_train
|
||||
cp -rf ../src/ ../train.py ./run_distribute_train
|
||||
cp -rf ../src/ ../train.py ../*.yaml ./run_distribute_train
|
||||
cd run_distribute_train || exit
|
||||
|
||||
export RANK_SIZE=$1
|
||||
PRETRAINED_PATH=$2
|
||||
PATH3=$4
|
||||
|
||||
mindrecord_dir=$PATH3/MindRecord_COCO_TRAIN/
|
||||
if [ $# -eq 5 ]
|
||||
then
|
||||
mindrecord_dir=$(get_real_path $5)
|
||||
if [ ! -d $mindrecord_dir ]
|
||||
then
|
||||
echo "error: mindrecord_dir=$mindrecord_dir is not a dir"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
echo $mindrecord_dir
|
||||
|
||||
BASE_PATH=$(cd ./"`dirname $0`" || exit; pwd)
|
||||
if [ $# -ge 1 ]; then
|
||||
if [ $3 == 'resnet_v1.5_50' ]; then
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config.yaml"
|
||||
elif [ $3 == 'resnet_v1_101' ]; then
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config_101.yaml"
|
||||
elif [ $3 == 'resnet_v1_152' ]; then
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config_152.yaml"
|
||||
elif [ $3 == 'resnet_v1_50' ]; then
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config.yaml"
|
||||
else
|
||||
echo "Unrecognized parameter"
|
||||
exit 1
|
||||
fi
|
||||
else
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config.yaml"
|
||||
fi
|
||||
|
||||
echo "start training on $RANK_SIZE devices"
|
||||
|
||||
mpirun -n $RANK_SIZE \
|
||||
python train.py \
|
||||
--config_path=$CONFIG_FILE \
|
||||
--run_distribute=True \
|
||||
--device_target="GPU" \
|
||||
--device_num=$RANK_SIZE \
|
||||
--pre_trained=$PRETRAINED_PATH \
|
||||
--backbone=$3 > log 2>&1 &
|
||||
--backbone=$3 \
|
||||
--coco_root=$PATH3 \
|
||||
--mindrecord_dir=$mindrecord_dir > log 2>&1 &
|
|
@ -14,9 +14,9 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ $# != 3 ]
|
||||
if [ $# -le 3 ]
|
||||
then
|
||||
echo "Usage: sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE]"
|
||||
echo "Usage: sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
@ -35,6 +35,8 @@ get_real_path(){
|
|||
}
|
||||
PATH1=$(get_real_path $1)
|
||||
PATH2=$(get_real_path $2)
|
||||
PATH3=$(get_real_path $4)
|
||||
echo $PATH3
|
||||
echo $PATH1
|
||||
echo $PATH2
|
||||
|
||||
|
@ -50,6 +52,42 @@ then
|
|||
exit 1
|
||||
fi
|
||||
|
||||
if [ ! -d $PATH3 ]
|
||||
then
|
||||
echo "error: COCO_ROOT=$PATH3 is not a dir"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
mindrecord_dir=$PATH3/MindRecord_COCO_TRAIN/
|
||||
if [ $# -eq 5 ]
|
||||
then
|
||||
mindrecord_dir=$(get_real_path $5)
|
||||
if [ ! -d $mindrecord_dir ]
|
||||
then
|
||||
echo "error: mindrecord_dir=$mindrecord_dir is not a dir"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
echo $mindrecord_dir
|
||||
|
||||
BASE_PATH=$(cd ./"`dirname $0`" || exit; pwd)
|
||||
if [ $# -ge 1 ]; then
|
||||
if [ $3 == 'resnet_v1.5_50' ]; then
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config.yaml"
|
||||
elif [ $3 == 'resnet_v1_101' ]; then
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config_101.yaml"
|
||||
elif [ $3 == 'resnet_v1_152' ]; then
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config_152.yaml"
|
||||
elif [ $3 == 'resnet_v1_50' ]; then
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config.yaml"
|
||||
else
|
||||
echo "Unrecognized parameter"
|
||||
exit 1
|
||||
fi
|
||||
else
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config.yaml"
|
||||
fi
|
||||
|
||||
ulimit -u unlimited
|
||||
export DEVICE_NUM=1
|
||||
export RANK_SIZE=$DEVICE_NUM
|
||||
|
@ -62,10 +100,12 @@ then
|
|||
fi
|
||||
mkdir ./eval
|
||||
cp ../*.py ./eval
|
||||
cp ../*.yaml ./eval
|
||||
cp *.sh ./eval
|
||||
cp -r ../src ./eval
|
||||
cd ./eval || exit
|
||||
env > env.log
|
||||
echo "start eval for device $DEVICE_ID"
|
||||
python eval.py --device_id=$DEVICE_ID --ann_file=$PATH1 --checkpoint_path=$PATH2 --backbone=$3 &> log &
|
||||
python eval.py --config_path=$CONFIG_FILE --device_id=$DEVICE_ID --ann_file=$PATH1 --checkpoint_path=$PATH2 \
|
||||
--backbone=$3 --coco_root=$PATH3 --mindrecord_dir=$mindrecord_dir &> log &
|
||||
cd ..
|
|
@ -14,9 +14,9 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ $# != 3 ]
|
||||
if [ $# -le 3 ]
|
||||
then
|
||||
echo "Usage: sh run_eval_gpu.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE]"
|
||||
echo "Usage: sh run_eval_gpu.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
@ -35,8 +35,10 @@ get_real_path(){
|
|||
}
|
||||
PATH1=$(get_real_path $1)
|
||||
PATH2=$(get_real_path $2)
|
||||
PATH3=$(get_real_path $4)
|
||||
echo $PATH1
|
||||
echo $PATH2
|
||||
echo $PATH3
|
||||
|
||||
if [ ! -f $PATH1 ]
|
||||
then
|
||||
|
@ -50,6 +52,42 @@ then
|
|||
exit 1
|
||||
fi
|
||||
|
||||
if [ ! -d $PATH3 ]
|
||||
then
|
||||
echo "error: COCO_ROOT=$PATH3 is not a dir"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
mindrecord_dir=$PATH3/MindRecord_COCO_TRAIN/
|
||||
if [ $# -eq 5 ]
|
||||
then
|
||||
mindrecord_dir=$(get_real_path $5)
|
||||
if [ ! -d $mindrecord_dir ]
|
||||
then
|
||||
echo "error: mindrecord_dir=$mindrecord_dir is not a dir"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
echo $mindrecord_dir
|
||||
|
||||
BASE_PATH=$(cd ./"`dirname $0`" || exit; pwd)
|
||||
if [ $# -ge 1 ]; then
|
||||
if [ $3 == 'resnet_v1.5_50' ]; then
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config.yaml"
|
||||
elif [ $3 == 'resnet_v1_101' ]; then
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config_101.yaml"
|
||||
elif [ $3 == 'resnet_v1_152' ]; then
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config_152.yaml"
|
||||
elif [ $3 == 'resnet_v1_50' ]; then
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config.yaml"
|
||||
else
|
||||
echo "Unrecognized parameter"
|
||||
exit 1
|
||||
fi
|
||||
else
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config.yaml"
|
||||
fi
|
||||
|
||||
export DEVICE_NUM=1
|
||||
export RANK_SIZE=$DEVICE_NUM
|
||||
export DEVICE_ID=0
|
||||
|
@ -61,10 +99,12 @@ then
|
|||
fi
|
||||
mkdir ./eval
|
||||
cp ../*.py ./eval
|
||||
cp ../*.yaml ./eval
|
||||
cp *.sh ./eval
|
||||
cp -r ../src ./eval
|
||||
cd ./eval || exit
|
||||
env > env.log
|
||||
echo "start eval for device $DEVICE_ID"
|
||||
python eval.py --device_target="GPU" --device_id=$DEVICE_ID --ann_file=$PATH1 --checkpoint_path=$PATH2 --backbone=$3 &> log &
|
||||
python eval.py --config_path=$CONFIG_FILE --coco_root=$PATH3 --mindrecord_dir=$mindrecord_dir \
|
||||
--device_target="GPU" --device_id=$DEVICE_ID --ann_file=$PATH1 --checkpoint_path=$PATH2 --backbone=$3 &> log &
|
||||
cd ..
|
||||
|
|
|
@ -14,9 +14,9 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ $# -ne 2 ]
|
||||
if [ $# -le 2 ]
|
||||
then
|
||||
echo "Usage: sh run_standalone_train_ascend.sh [PRETRAINED_PATH] [BACKBONE]"
|
||||
echo "Usage: sh run_standalone_train_ascend.sh [PRETRAINED_PATH] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
@ -35,7 +35,9 @@ get_real_path(){
|
|||
}
|
||||
|
||||
PATH1=$(get_real_path $1)
|
||||
PATH2=$(get_real_path $3)
|
||||
echo $PATH1
|
||||
echo $PATH2
|
||||
|
||||
if [ ! -f $PATH1 ]
|
||||
then
|
||||
|
@ -43,6 +45,42 @@ then
|
|||
exit 1
|
||||
fi
|
||||
|
||||
if [ ! -d $PATH2 ]
|
||||
then
|
||||
echo "error: COCO_ROOT=$PATH2 is not a dir"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
mindrecord_dir=$PATH2/MindRecord_COCO_TRAIN/
|
||||
if [ $# -eq 4 ]
|
||||
then
|
||||
mindrecord_dir=$(get_real_path $4)
|
||||
if [ ! -d $mindrecord_dir ]
|
||||
then
|
||||
echo "error: mindrecord_dir=$mindrecord_dir is not a dir"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
echo $mindrecord_dir
|
||||
|
||||
BASE_PATH=$(cd ./"`dirname $0`" || exit; pwd)
|
||||
if [ $# -ge 1 ]; then
|
||||
if [ $2 == 'resnet_v1.5_50' ]; then
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config.yaml"
|
||||
elif [ $2 == 'resnet_v1_101' ]; then
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config_101.yaml"
|
||||
elif [ $2 == 'resnet_v1_152' ]; then
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config_152.yaml"
|
||||
elif [ $2 == 'resnet_v1_50' ]; then
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config.yaml"
|
||||
else
|
||||
echo "Unrecognized parameter"
|
||||
exit 1
|
||||
fi
|
||||
else
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config.yaml"
|
||||
fi
|
||||
|
||||
ulimit -u unlimited
|
||||
export DEVICE_NUM=1
|
||||
export DEVICE_ID=0
|
||||
|
@ -55,10 +93,12 @@ then
|
|||
fi
|
||||
mkdir ./train
|
||||
cp ../*.py ./train
|
||||
cp ../*.yaml ./train
|
||||
cp *.sh ./train
|
||||
cp -r ../src ./train
|
||||
cd ./train || exit
|
||||
echo "start training for device $DEVICE_ID"
|
||||
env > env.log
|
||||
python train.py --device_id=$DEVICE_ID --pre_trained=$PATH1 --backbone=$2 &> log &
|
||||
python train.py --config_path=$CONFIG_FILE --coco_root=$PATH2 --mindrecord_dir=$mindrecord_dir --device_id=$DEVICE_ID \
|
||||
--pre_trained=$PATH1 --backbone=$2 &> log &
|
||||
cd ..
|
|
@ -14,9 +14,9 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ $# -ne 2 ]
|
||||
if [ $# -le 2 ]
|
||||
then
|
||||
echo "Usage: sh run_standalone_train_gpu.sh [PRETRAINED_PATH] [BACKBONE]"
|
||||
echo "Usage: sh run_standalone_train_gpu.sh [PRETRAINED_PATH] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](option)"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
@ -35,7 +35,9 @@ get_real_path(){
|
|||
}
|
||||
|
||||
PATH1=$(get_real_path $1)
|
||||
PATH2=$(get_real_path $3)
|
||||
echo $PATH1
|
||||
echo $PATH2
|
||||
|
||||
if [ ! -f $PATH1 ]
|
||||
then
|
||||
|
@ -43,6 +45,42 @@ then
|
|||
exit 1
|
||||
fi
|
||||
|
||||
if [ ! -d $PATH2 ]
|
||||
then
|
||||
echo "error: COCO_ROOT=$PATH2 is not a dir"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
mindrecord_dir=$PATH2/MindRecord_COCO_TRAIN/
|
||||
if [ $# -eq 4 ]
|
||||
then
|
||||
mindrecord_dir=$(get_real_path $4)
|
||||
if [ ! -d $mindrecord_dir ]
|
||||
then
|
||||
echo "error: mindrecord_dir=$mindrecord_dir is not a dir"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
echo $mindrecord_dir
|
||||
|
||||
BASE_PATH=$(cd ./"`dirname $0`" || exit; pwd)
|
||||
if [ $# -ge 1 ]; then
|
||||
if [ $2 == 'resnet_v1.5_50' ]; then
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config.yaml"
|
||||
elif [ $2 == 'resnet_v1_101' ]; then
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config_101.yaml"
|
||||
elif [ $2 == 'resnet_v1_152' ]; then
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config_152.yaml"
|
||||
elif [ $2 == 'resnet_v1_50' ]; then
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config.yaml"
|
||||
else
|
||||
echo "Unrecognized parameter"
|
||||
exit 1
|
||||
fi
|
||||
else
|
||||
CONFIG_FILE="${BASE_PATH}/../default_config.yaml"
|
||||
fi
|
||||
|
||||
ulimit -u unlimited
|
||||
export DEVICE_NUM=1
|
||||
export DEVICE_ID=0
|
||||
|
@ -55,10 +93,12 @@ then
|
|||
fi
|
||||
mkdir ./train
|
||||
cp ../*.py ./train
|
||||
cp ../*.yaml ./train
|
||||
cp *.sh ./train
|
||||
cp -r ../src ./train
|
||||
cd ./train || exit
|
||||
echo "start training for device $DEVICE_ID"
|
||||
env > env.log
|
||||
python train.py --device_id=$DEVICE_ID --pre_trained=$PATH1 --device_target="GPU" --backbone=$2 &> log &
|
||||
python train.py --config_path=$CONFIG_FILE --coco_root=$PATH2 --mindrecord_dir=$mindrecord_dir \
|
||||
--device_id=$DEVICE_ID --pre_trained=$PATH1 --device_target="GPU" --backbone=$2 &> log &
|
||||
cd ..
|
||||
|
|
|
@ -1,61 +0,0 @@
|
|||
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Parse arguments"""
|
||||
|
||||
from pprint import pprint, pformat
|
||||
import yaml
|
||||
|
||||
class Config:
|
||||
"""
|
||||
Configuration namespace. Convert dictionary to members.
|
||||
"""
|
||||
def __init__(self, cfg_dict):
|
||||
for k, v in cfg_dict.items():
|
||||
if isinstance(v, (list, tuple)):
|
||||
setattr(self, k, [Config(x) if isinstance(x, dict) else x for x in v])
|
||||
else:
|
||||
setattr(self, k, Config(v) if isinstance(v, dict) else v)
|
||||
|
||||
def __str__(self):
|
||||
return pformat(self.__dict__)
|
||||
|
||||
def __repr__(self):
|
||||
return self.__str__()
|
||||
|
||||
def parse_yaml(yaml_path):
|
||||
"""
|
||||
Parse the yaml config file.
|
||||
|
||||
Args:
|
||||
yaml_path: Path to the yaml config.
|
||||
"""
|
||||
with open(yaml_path, 'r') as fin:
|
||||
try:
|
||||
cfgs = yaml.load_all(fin.read(), Loader=yaml.FullLoader)
|
||||
cfgs = [x for x in cfgs]
|
||||
if len(cfgs) == 1:
|
||||
cfg = cfgs[0]
|
||||
except:
|
||||
raise ValueError("Failed to parse yaml")
|
||||
return cfg
|
||||
|
||||
def get_config(config_path):
|
||||
"""
|
||||
Get Config according to the yaml file and cli arguments.
|
||||
"""
|
||||
default = parse_yaml(config_path)
|
||||
pprint(default)
|
||||
return Config(default)
|
|
@ -15,15 +15,13 @@
|
|||
"""
|
||||
convert resnet pretrain model to faster_rcnn backbone pretrain model
|
||||
"""
|
||||
import argparse
|
||||
from mindspore.train.serialization import load_checkpoint, save_checkpoint
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.common.tensor import Tensor
|
||||
import mindspore.common.dtype as mstype
|
||||
from .model_utils.config import config
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser(description='load_ckpt')
|
||||
parser.add_argument('--ckpt_file', type=str, default='', help='ckpt file path')
|
||||
args_opt = parser.parse_args()
|
||||
def load_weights(model_path, use_fp16_weight):
|
||||
"""
|
||||
load resnet pretrain checkpoint file.
|
||||
|
@ -60,5 +58,5 @@ def load_weights(model_path, use_fp16_weight):
|
|||
return param_list
|
||||
|
||||
if __name__ == "__main__":
|
||||
parameter_list = load_weights(args_opt.ckpt_file, use_fp16_weight=False)
|
||||
parameter_list = load_weights(config.ckpt_file, use_fp16_weight=False)
|
||||
save_checkpoint(parameter_list, "resnet_backbone.ckpt")
|
||||
|
|
|
@ -0,0 +1,127 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Parse arguments"""
|
||||
|
||||
import os
|
||||
import ast
|
||||
import argparse
|
||||
from pprint import pprint, pformat
|
||||
import yaml
|
||||
|
||||
class Config:
|
||||
"""
|
||||
Configuration namespace. Convert dictionary to members.
|
||||
"""
|
||||
def __init__(self, cfg_dict):
|
||||
for k, v in cfg_dict.items():
|
||||
if isinstance(v, (list, tuple)):
|
||||
setattr(self, k, [Config(x) if isinstance(x, dict) else x for x in v])
|
||||
else:
|
||||
setattr(self, k, Config(v) if isinstance(v, dict) else v)
|
||||
|
||||
def __str__(self):
|
||||
return pformat(self.__dict__)
|
||||
|
||||
def __repr__(self):
|
||||
return self.__str__()
|
||||
|
||||
|
||||
def parse_cli_to_yaml(parser, cfg, helper=None, choices=None, cfg_path="default_config.yaml"):
|
||||
"""
|
||||
Parse command line arguments to the configuration according to the default yaml.
|
||||
|
||||
Args:
|
||||
parser: Parent parser.
|
||||
cfg: Base configuration.
|
||||
helper: Helper description.
|
||||
cfg_path: Path to the default yaml config.
|
||||
"""
|
||||
parser = argparse.ArgumentParser(description="[REPLACE THIS at config.py]",
|
||||
parents=[parser])
|
||||
helper = {} if helper is None else helper
|
||||
choices = {} if choices is None else choices
|
||||
for item in cfg:
|
||||
if not isinstance(cfg[item], list) and not isinstance(cfg[item], dict):
|
||||
help_description = helper[item] if item in helper else "Please reference to {}".format(cfg_path)
|
||||
choice = choices[item] if item in choices else None
|
||||
if isinstance(cfg[item], bool):
|
||||
parser.add_argument("--" + item, type=ast.literal_eval, default=cfg[item], choices=choice,
|
||||
help=help_description)
|
||||
else:
|
||||
parser.add_argument("--" + item, type=type(cfg[item]), default=cfg[item], choices=choice,
|
||||
help=help_description)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def parse_yaml(yaml_path):
|
||||
"""
|
||||
Parse the yaml config file.
|
||||
|
||||
Args:
|
||||
yaml_path: Path to the yaml config.
|
||||
"""
|
||||
with open(yaml_path, 'r') as fin:
|
||||
try:
|
||||
cfgs = yaml.load_all(fin.read(), Loader=yaml.FullLoader)
|
||||
cfgs = [x for x in cfgs]
|
||||
if len(cfgs) == 1:
|
||||
cfg_helper = {}
|
||||
cfg = cfgs[0]
|
||||
cfg_choices = {}
|
||||
elif len(cfgs) == 2:
|
||||
cfg, cfg_helper = cfgs
|
||||
cfg_choices = {}
|
||||
elif len(cfgs) == 3:
|
||||
cfg, cfg_helper, cfg_choices = cfgs
|
||||
else:
|
||||
raise ValueError("At most 3 docs (config, description for help, choices) are supported in config yaml")
|
||||
print(cfg_helper)
|
||||
except:
|
||||
raise ValueError("Failed to parse yaml")
|
||||
return cfg, cfg_helper, cfg_choices
|
||||
|
||||
|
||||
def merge(args, cfg):
|
||||
"""
|
||||
Merge the base config from yaml file and command line arguments.
|
||||
|
||||
Args:
|
||||
args: Command line arguments.
|
||||
cfg: Base configuration.
|
||||
"""
|
||||
args_var = vars(args)
|
||||
for item in args_var:
|
||||
cfg[item] = args_var[item]
|
||||
return cfg
|
||||
|
||||
|
||||
def get_config():
|
||||
"""
|
||||
Get Config according to the yaml file and cli arguments.
|
||||
"""
|
||||
parser = argparse.ArgumentParser(description="default name", add_help=False)
|
||||
current_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
parser.add_argument("--config_path", type=str, default=os.path.join(current_dir, "../../default_config.yaml"),
|
||||
help="Config file path")
|
||||
path_args, _ = parser.parse_known_args()
|
||||
default, helper, choices = parse_yaml(path_args.config_path)
|
||||
pprint(default)
|
||||
args = parse_cli_to_yaml(parser=parser, cfg=default, helper=helper, choices=choices, cfg_path=path_args.config_path)
|
||||
final_config = merge(args, default)
|
||||
return Config(final_config)
|
||||
|
||||
config = get_config()
|
|
@ -0,0 +1,27 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Device adapter for ModelArts"""
|
||||
|
||||
from .config import config
|
||||
|
||||
if config.enable_modelarts:
|
||||
from .moxing_adapter import get_device_id, get_device_num, get_rank_id, get_job_id
|
||||
else:
|
||||
from .local_adapter import get_device_id, get_device_num, get_rank_id, get_job_id
|
||||
|
||||
__all__ = [
|
||||
"get_device_id", "get_device_num", "get_rank_id", "get_job_id"
|
||||
]
|
|
@ -0,0 +1,36 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Local adapter"""
|
||||
|
||||
import os
|
||||
|
||||
def get_device_id():
|
||||
device_id = os.getenv('DEVICE_ID', '0')
|
||||
return int(device_id)
|
||||
|
||||
|
||||
def get_device_num():
|
||||
device_num = os.getenv('RANK_SIZE', '1')
|
||||
return int(device_num)
|
||||
|
||||
|
||||
def get_rank_id():
|
||||
global_rank_id = os.getenv('RANK_ID', '0')
|
||||
return int(global_rank_id)
|
||||
|
||||
|
||||
def get_job_id():
|
||||
return "Local Job"
|
|
@ -0,0 +1,122 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Moxing adapter for ModelArts"""
|
||||
|
||||
import os
|
||||
import functools
|
||||
from mindspore import context
|
||||
from mindspore.profiler import Profiler
|
||||
from .config import config
|
||||
|
||||
_global_sync_count = 0
|
||||
|
||||
def get_device_id():
|
||||
device_id = os.getenv('DEVICE_ID', '0')
|
||||
return int(device_id)
|
||||
|
||||
|
||||
def get_device_num():
|
||||
device_num = os.getenv('RANK_SIZE', '1')
|
||||
return int(device_num)
|
||||
|
||||
|
||||
def get_rank_id():
|
||||
global_rank_id = os.getenv('RANK_ID', '0')
|
||||
return int(global_rank_id)
|
||||
|
||||
|
||||
def get_job_id():
|
||||
job_id = os.getenv('JOB_ID')
|
||||
job_id = job_id if job_id != "" else "default"
|
||||
return job_id
|
||||
|
||||
def sync_data(from_path, to_path):
|
||||
"""
|
||||
Download data from remote obs to local directory if the first url is remote url and the second one is local path
|
||||
Upload data from local directory to remote obs in contrast.
|
||||
"""
|
||||
import moxing as mox
|
||||
import time
|
||||
global _global_sync_count
|
||||
sync_lock = "/tmp/copy_sync.lock" + str(_global_sync_count)
|
||||
_global_sync_count += 1
|
||||
|
||||
# Each server contains 8 devices as most.
|
||||
if get_device_id() % min(get_device_num(), 8) == 0 and not os.path.exists(sync_lock):
|
||||
print("from path: ", from_path)
|
||||
print("to path: ", to_path)
|
||||
mox.file.copy_parallel(from_path, to_path)
|
||||
print("===finish data synchronization===")
|
||||
try:
|
||||
os.mknod(sync_lock)
|
||||
except IOError:
|
||||
pass
|
||||
print("===save flag===")
|
||||
|
||||
while True:
|
||||
if os.path.exists(sync_lock):
|
||||
break
|
||||
time.sleep(1)
|
||||
|
||||
print("Finish sync data from {} to {}.".format(from_path, to_path))
|
||||
|
||||
|
||||
def moxing_wrapper(pre_process=None, post_process=None):
|
||||
"""
|
||||
Moxing wrapper to download dataset and upload outputs.
|
||||
"""
|
||||
def wrapper(run_func):
|
||||
@functools.wraps(run_func)
|
||||
def wrapped_func(*args, **kwargs):
|
||||
# Download data from data_url
|
||||
if config.enable_modelarts:
|
||||
if config.data_url:
|
||||
sync_data(config.data_url, config.data_path)
|
||||
print("Dataset downloaded: ", os.listdir(config.data_path))
|
||||
if config.checkpoint_url:
|
||||
sync_data(config.checkpoint_url, config.load_path)
|
||||
print("Preload downloaded: ", os.listdir(config.load_path))
|
||||
if config.train_url:
|
||||
sync_data(config.train_url, config.output_path)
|
||||
print("Workspace downloaded: ", os.listdir(config.output_path))
|
||||
|
||||
context.set_context(save_graphs_path=os.path.join(config.output_path, str(get_rank_id())))
|
||||
config.device_num = get_device_num()
|
||||
config.device_id = get_device_id()
|
||||
if not os.path.exists(config.output_path):
|
||||
os.makedirs(config.output_path)
|
||||
|
||||
if pre_process:
|
||||
pre_process()
|
||||
|
||||
if config.enable_profiling:
|
||||
profiler = Profiler()
|
||||
|
||||
run_func(*args, **kwargs)
|
||||
|
||||
if config.enable_profiling:
|
||||
profiler.analyse()
|
||||
|
||||
# Upload data to train_url
|
||||
if config.enable_modelarts:
|
||||
if post_process:
|
||||
post_process()
|
||||
|
||||
if config.train_url:
|
||||
print("Start to copy output directory")
|
||||
sync_data(config.output_path, config.train_url)
|
||||
return wrapped_func
|
||||
return wrapper
|
|
@ -17,8 +17,6 @@
|
|||
|
||||
import os
|
||||
import time
|
||||
import argparse
|
||||
import ast
|
||||
import numpy as np
|
||||
|
||||
import mindspore.common.dtype as mstype
|
||||
|
@ -34,62 +32,45 @@ from mindspore.common import set_seed
|
|||
from src.network_define import LossCallBack, WithLossCell, TrainOneStepCell, LossNet
|
||||
from src.dataset import data_to_mindrecord_byte_image, create_fasterrcnn_dataset
|
||||
from src.lr_schedule import dynamic_lr
|
||||
import src.config as cfg
|
||||
from src.model_utils.config import config
|
||||
from src.model_utils.moxing_adapter import moxing_wrapper
|
||||
from src.model_utils.device_adapter import get_device_id, get_device_num, get_rank_id
|
||||
|
||||
|
||||
set_seed(1)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target, device_id=get_device_id())
|
||||
|
||||
parser = argparse.ArgumentParser(description="FasterRcnn training")
|
||||
parser.add_argument("--run_distribute", type=ast.literal_eval, default=False, help="Run distribute, default: false.")
|
||||
parser.add_argument("--dataset", type=str, default="coco", help="Dataset name, default: coco.")
|
||||
parser.add_argument("--pre_trained", type=str, default="", help="Pretrained file path.")
|
||||
parser.add_argument("--device_target", type=str, default="Ascend",
|
||||
help="device where the code will be implemented, default is Ascend")
|
||||
parser.add_argument("--device_id", type=int, default=0, help="Device id, default: 0.")
|
||||
parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default: 1.")
|
||||
parser.add_argument("--rank_id", type=int, default=0, help="Rank id, default: 0.")
|
||||
parser.add_argument("--backbone", type=str, required=True, \
|
||||
help="backbone network name, options:resnet_v1_50, resnet_v1.5_50, resnet_v1_101, resnet_v1_152")
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=args_opt.device_id)
|
||||
|
||||
if args_opt.backbone in ("resnet_v1.5_50", "resnet_v1_101", "resnet_v1_152"):
|
||||
if config.backbone in ("resnet_v1.5_50", "resnet_v1_101", "resnet_v1_152"):
|
||||
from src.FasterRcnn.faster_rcnn_resnet import Faster_Rcnn_Resnet
|
||||
if args_opt.backbone == "resnet_v1.5_50":
|
||||
config = cfg.get_config("./src/config_50.yaml")
|
||||
elif args_opt.backbone == "resnet_v1_101":
|
||||
config = cfg.get_config("./src/config_101.yaml")
|
||||
elif args_opt.backbone == "resnet_v1_152":
|
||||
config = cfg.get_config("./src/config_152.yaml")
|
||||
|
||||
elif args_opt.backbone == "resnet_v1_50":
|
||||
config = cfg.get_config("./src/config_50.yaml")
|
||||
elif config.backbone == "resnet_v1_50":
|
||||
from src.FasterRcnn.faster_rcnn_resnet50v1 import Faster_Rcnn_Resnet
|
||||
|
||||
if __name__ == '__main__':
|
||||
if args_opt.device_target == "GPU":
|
||||
context.set_context(enable_graph_kernel=True)
|
||||
if args_opt.run_distribute:
|
||||
if args_opt.device_target == "Ascend":
|
||||
rank = args_opt.rank_id
|
||||
device_num = args_opt.device_num
|
||||
context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||
gradients_mean=True)
|
||||
init()
|
||||
else:
|
||||
init("nccl")
|
||||
context.reset_auto_parallel_context()
|
||||
rank = get_rank()
|
||||
device_num = get_group_size()
|
||||
context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||
gradients_mean=True)
|
||||
if config.device_target == "GPU":
|
||||
context.set_context(enable_graph_kernel=True)
|
||||
if config.run_distribute:
|
||||
if config.device_target == "Ascend":
|
||||
rank = get_rank_id()
|
||||
device_num = get_device_num()
|
||||
context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||
gradients_mean=True)
|
||||
init()
|
||||
else:
|
||||
rank = 0
|
||||
device_num = 1
|
||||
init("nccl")
|
||||
context.reset_auto_parallel_context()
|
||||
rank = get_rank()
|
||||
device_num = get_group_size()
|
||||
context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||
gradients_mean=True)
|
||||
else:
|
||||
rank = 0
|
||||
device_num = 1
|
||||
|
||||
|
||||
def train_fasterrcnn_():
|
||||
""" train_fasterrcnn_ """
|
||||
print("Start create dataset!")
|
||||
|
||||
# It will generate mindrecord file in args_opt.mindrecord_dir,
|
||||
# It will generate mindrecord file in config.mindrecord_dir,
|
||||
# and the file name is FasterRcnn.mindrecord0, 1, ... file_num.
|
||||
prefix = "FasterRcnn.mindrecord"
|
||||
mindrecord_dir = config.mindrecord_dir
|
||||
|
@ -99,7 +80,7 @@ if __name__ == '__main__':
|
|||
if rank == 0 and not os.path.exists(mindrecord_file):
|
||||
if not os.path.isdir(mindrecord_dir):
|
||||
os.makedirs(mindrecord_dir)
|
||||
if args_opt.dataset == "coco":
|
||||
if config.dataset == "coco":
|
||||
if os.path.isdir(config.coco_root):
|
||||
if not os.path.exists(config.coco_root):
|
||||
print("Please make sure config:coco_root is valid.")
|
||||
|
@ -125,8 +106,6 @@ if __name__ == '__main__':
|
|||
|
||||
print("CHECKING MINDRECORD FILES DONE!")
|
||||
|
||||
loss_scale = float(config.loss_scale)
|
||||
|
||||
# When create MindDataset, using the fitst mindrecord file, such as FasterRcnn.mindrecord0.
|
||||
dataset = create_fasterrcnn_dataset(config, mindrecord_file, batch_size=config.batch_size,
|
||||
device_num=device_num, rank_id=rank,
|
||||
|
@ -136,10 +115,20 @@ if __name__ == '__main__':
|
|||
dataset_size = dataset.get_dataset_size()
|
||||
print("Create dataset done!")
|
||||
|
||||
return dataset_size, dataset
|
||||
|
||||
|
||||
def modelarts_pre_process():
|
||||
config.save_checkpoint_path = config.output_path
|
||||
|
||||
@moxing_wrapper(pre_process=modelarts_pre_process)
|
||||
def train_fasterrcnn():
|
||||
""" train_fasterrcnn """
|
||||
dataset_size, dataset = train_fasterrcnn_()
|
||||
net = Faster_Rcnn_Resnet(config=config)
|
||||
net = net.set_train()
|
||||
|
||||
load_path = args_opt.pre_trained
|
||||
load_path = config.pre_trained
|
||||
if load_path != "":
|
||||
param_dict = load_checkpoint(load_path)
|
||||
|
||||
|
@ -180,7 +169,7 @@ if __name__ == '__main__':
|
|||
opt = SGD(params=net.trainable_params(), learning_rate=lr, momentum=config.momentum,
|
||||
weight_decay=config.weight_decay, loss_scale=config.loss_scale)
|
||||
net_with_loss = WithLossCell(net, loss)
|
||||
if args_opt.run_distribute:
|
||||
if config.run_distribute:
|
||||
net = TrainOneStepCell(net_with_loss, opt, sens=config.loss_scale, reduce_flag=True,
|
||||
mean=True, degree=device_num)
|
||||
else:
|
||||
|
@ -198,3 +187,6 @@ if __name__ == '__main__':
|
|||
|
||||
model = Model(net)
|
||||
model.train(config.epoch_size, dataset, callbacks=cb)
|
||||
|
||||
if __name__ == '__main__':
|
||||
train_fasterrcnn()
|
||||
|
|
|
@ -60,12 +60,115 @@ After dataset preparation, you can start training and evaluation as follows:
|
|||
sh scripts/run_standalone_train_ascend.sh 0 52 /path/ende-l128-mindrecord
|
||||
|
||||
# run distributed training example
|
||||
sh scripts/run_distribute_train_ascend.sh 8 52 /path/ende-l128-mindrecord rank_table.json
|
||||
sh scripts/run_distribute_train_ascend.sh 8 52 /path/ende-l128-mindrecord rank_table.json ./default_config.yaml
|
||||
|
||||
# run evaluation example
|
||||
python eval.py > eval.log 2>&1 &
|
||||
```
|
||||
|
||||
- Running on [ModelArts](https://support.huaweicloud.com/modelarts/)
|
||||
|
||||
```bash
|
||||
# Train 8p with Ascend
|
||||
# (1) Perform a or b.
|
||||
# a. Set "enable_modelarts=True" on default_config.yaml file.
|
||||
# Set "distribute=True" on default_config.yaml file.
|
||||
# Set "dataset_path='/cache/data'" on default_config.yaml file.
|
||||
# Set "epoch_size: 52" on default_config.yaml file.
|
||||
# (optional)Set "checkpoint_url='s3://dir_to_your_pretrained/'" on default_config.yaml file.
|
||||
# Set other parameters on default_config.yaml file you need.
|
||||
# b. Add "enable_modelarts=True" on the website UI interface.
|
||||
# Add "distribute=True" on the website UI interface.
|
||||
# Add "dataset_path=/cache/data" on the website UI interface.
|
||||
# Add "epoch_size: 52" on the website UI interface.
|
||||
# (optional)Add "checkpoint_url='s3://dir_to_your_pretrained/'" on the website UI interface.
|
||||
# Add other parameters on the website UI interface.
|
||||
# (2) Prepare model code
|
||||
# (3) Upload or copy your pretrained model to S3 bucket if you want to finetune.
|
||||
# (4) Perform a or b. (suggested option a)
|
||||
# a. First, zip MindRecord dataset to one zip file.
|
||||
# Second, upload your zip dataset to S3 bucket.(you could also upload the origin mindrecord dataset, but it can be so slow.)
|
||||
# b. Upload the original dataset to S3 bucket.
|
||||
# (Data set conversion occurs during training process and costs a lot of time. it happens every time you train.)
|
||||
# (5) Set the code directory to "/path/transformer" on the website UI interface.
|
||||
# (6) Set the startup file to "train.py" on the website UI interface.
|
||||
# (7) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface.
|
||||
# (8) Create your job.
|
||||
#
|
||||
# Train 1p with Ascend
|
||||
# (1) Perform a or b.
|
||||
# a. Set "enable_modelarts=True" on default_config.yaml file.
|
||||
# Set "dataset_path='/cache/data'" on default_config.yaml file.
|
||||
# Set "epoch_size: 52" on default_config.yaml file.
|
||||
# (optional)Set "checkpoint_url='s3://dir_to_your_pretrained/'" on default_config.yaml file.
|
||||
# Set other parameters on default_config.yaml file you need.
|
||||
# b. Add "enable_modelarts=True" on the website UI interface.
|
||||
# Add "dataset_path='/cache/data'" on the website UI interface.
|
||||
# Add "epoch_size: 52" on the website UI interface.
|
||||
# (optional)Add "checkpoint_url='s3://dir_to_your_pretrained/'" on the website UI interface.
|
||||
# Add other parameters on the website UI interface.
|
||||
# (2) Prepare model code
|
||||
# (3) Upload or copy your pretrained model to S3 bucket if you want to finetune.
|
||||
# (4) Perform a or b. (suggested option a)
|
||||
# a. zip MindRecord dataset to one zip file.
|
||||
# Second, upload your zip dataset to S3 bucket.(you could also upload the origin mindrecord dataset, but it can be so slow.)
|
||||
# b. Upload the original dataset to S3 bucket.
|
||||
# (Data set conversion occurs during training process and costs a lot of time. it happens every time you train.)
|
||||
# (5) Set the code directory to "/path/transformer" on the website UI interface.
|
||||
# (6) Set the startup file to "train.py" on the website UI interface.
|
||||
# (7) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface.
|
||||
# (8) Create your job.
|
||||
#
|
||||
# Eval 1p with Ascend
|
||||
# (1) Perform a or b.
|
||||
# a. Set "enable_modelarts=True" on default_config.yaml file.
|
||||
# Set "checkpoint_url='s3://dir_to_your_trained_model/'" on base_config.yaml file.
|
||||
# Set "checkpoint='./transformer/transformer_trained.ckpt'" on default_config.yaml file.
|
||||
# Set "dataset_path='/cache/data'" on default_config.yaml file.
|
||||
# Set other parameters on default_config.yaml file you need.
|
||||
# b. Add "enable_modelarts=True" on the website UI interface.
|
||||
# Add "checkpoint_url='s3://dir_to_your_trained_model/'" on the website UI interface.
|
||||
# Add "checkpoint='./transformer/transformer_trained.ckpt'" on the website UI interface.
|
||||
# Add "dataset_path='/cache/data'" on the website UI interface.
|
||||
# Add other parameters on the website UI interface.
|
||||
# (2) Prepare model code
|
||||
# (3) Upload or copy your trained model to S3 bucket.
|
||||
# (4) Perform a or b. (suggested option a)
|
||||
# a. First, zip MindRecord dataset to one zip file.
|
||||
# Second, upload your zip dataset to S3 bucket.(you could also upload the origin mindrecord dataset, but it can be so slow.)
|
||||
# b. Upload the original dataset to S3 bucket.
|
||||
# (Data set conversion occurs during training process and costs a lot of time. it happens every time you train.)
|
||||
# (5) Set the code directory to "/path/transformer" on the website UI interface.
|
||||
# (6) Set the startup file to "eval.py" on the website UI interface.
|
||||
# (7) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface.
|
||||
# (8) Create your job.
|
||||
```
|
||||
|
||||
- Export on ModelArts (If you want to run in modelarts, please check the official documentation of [modelarts](https://support.huaweicloud.com/modelarts/), and you can start evaluating as follows)
|
||||
|
||||
1. Export s8 multiscale and flip with voc val dataset on modelarts, evaluating steps are as follows:
|
||||
|
||||
```python
|
||||
# (1) Perform a or b.
|
||||
# a. Set "enable_modelarts=True" on base_config.yaml file.
|
||||
# Set "file_name='transformer'" on base_config.yaml file.
|
||||
# Set "file_format='AIR'" on base_config.yaml file.
|
||||
# Set "checkpoint_url='/The path of checkpoint in S3/'" on beta_config.yaml file.
|
||||
# Set "ckpt_file='/cache/checkpoint_path/model.ckpt'" on base_config.yaml file.
|
||||
# Set other parameters on base_config.yaml file you need.
|
||||
# b. Add "enable_modelarts=True" on the website UI interface.
|
||||
# Add "file_name='transformer'" on the website UI interface.
|
||||
# Add "file_format='AIR'" on the website UI interface.
|
||||
# Add "checkpoint_url='/The path of checkpoint in S3/'" on the website UI interface.
|
||||
# Add "ckpt_file='/cache/checkpoint_path/model.ckpt'" on the website UI interface.
|
||||
# Add other parameters on the website UI interface.
|
||||
# (2) Upload or copy your trained model to S3 bucket.
|
||||
# (3) Set the code directory to "/path/transformer" on the website UI interface.
|
||||
# (4) Set the startup file to "export.py" on the website UI interface.
|
||||
# (5) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface.
|
||||
# (6) Create your job.
|
||||
```
|
||||
|
||||
## [Script Description](#contents)
|
||||
|
||||
### [Script and Sample Code](#contents)
|
||||
|
@ -85,7 +188,6 @@ python eval.py > eval.log 2>&1 &
|
|||
├─src
|
||||
├─__init__.py
|
||||
├─beam_search.py
|
||||
├─config.py
|
||||
├─dataset.py
|
||||
├─eval_config.py
|
||||
├─lr_schedule.py
|
||||
|
@ -93,7 +195,15 @@ python eval.py > eval.log 2>&1 &
|
|||
├─tokenization.py
|
||||
├─transformer_for_train.py
|
||||
├─transformer_model.py
|
||||
└─weight_init.py
|
||||
├─weight_init.py
|
||||
└─model_utils
|
||||
├─config.py
|
||||
├─device_adapter.py
|
||||
├─local_adapter.py
|
||||
└─moxing_adapter.py
|
||||
├─default_config.yaml
|
||||
├─default_config_large.yaml
|
||||
├─default_config_large_gpu.yaml
|
||||
├─create_data.py
|
||||
├─eval.py
|
||||
├─export.py
|
||||
|
@ -214,7 +324,7 @@ Parameters for learning rate:
|
|||
- Run `run_distribute_train_ascend.sh` for distributed training of Transformer model.
|
||||
|
||||
``` bash
|
||||
sh scripts/run_distribute_train_ascend.sh DEVICE_NUM EPOCH_SIZE DATA_PATH RANK_TABLE_FILE
|
||||
sh scripts/run_distribute_train_ascend.sh DEVICE_NUM EPOCH_SIZE DATA_PATH RANK_TABLE_FILE CONFIG_PATH
|
||||
```
|
||||
|
||||
**Attention**: data sink mode can not be used in transformer since the input data have different sequence lengths.
|
||||
|
|
|
@ -66,12 +66,115 @@ Transformer具体包括六个编码模块和六个解码模块。每个编码模
|
|||
sh scripts/run_standalone_train_ascend.sh 0 52 /path/ende-l128-mindrecord
|
||||
|
||||
# 运行分布式训练示例
|
||||
sh scripts/run_distribute_train_ascend.sh 8 52 /path/ende-l128-mindrecord rank_table.json
|
||||
sh scripts/run_distribute_train_ascend.sh 8 52 /path/ende-l128-mindrecord rank_table.json ./default_config.yaml
|
||||
|
||||
# 运行评估示例
|
||||
python eval.py > eval.log 2>&1 &
|
||||
```
|
||||
|
||||
- 在 ModelArts 进行训练 (如果你想在modelarts上运行,可以参考以下文档 [modelarts](https://support.huaweicloud.com/modelarts/))
|
||||
|
||||
```python
|
||||
# 在 ModelArts 上使用8卡训练
|
||||
# (1) 执行a或者b
|
||||
# a. 在 default_config.yaml 文件中设置 "enable_modelarts=True"
|
||||
# 在 default_config.yaml 文件中设置 "distribute=True"
|
||||
# 在 default_config.yaml 文件中设置 "dataset_path='/cache/data'"
|
||||
# 在 default_config.yaml 文件中设置 "epoch_size: 52"
|
||||
# (可选)在 default_config.yaml 文件中设置 "checkpoint_url='s3://dir_to_your_pretrained/'"
|
||||
# 在 default_config.yaml 文件中设置 其他参数
|
||||
# b. 在网页上设置 "enable_modelarts=True"
|
||||
# 在网页上设置 "distribute=True"
|
||||
# 在网页上设置 "dataset_path=/cache/data"
|
||||
# 在网页上设置 "epoch_size: 52"
|
||||
# (可选)在网页上设置 "checkpoint_url='s3://dir_to_your_pretrained/'"
|
||||
# 在网页上设置 其他参数
|
||||
# (2) 准备模型代码
|
||||
# (3) 如果选择微调您的模型,请上传你的预训练模型到 S3 桶上
|
||||
# (4) 执行a或者b (推荐选择 a)
|
||||
# a. 第一, 将该数据集压缩为一个 ".zip" 文件。
|
||||
# 第二, 上传你的压缩数据集到 S3 桶上 (你也可以上传未压缩的数据集,但那可能会很慢。)
|
||||
# b. 上传原始数据集到 S3 桶上。
|
||||
# (数据集转换发生在训练过程中,需要花费较多的时间。每次训练的时候都会重新进行转换。)
|
||||
# (5) 在网页上设置你的代码路径为 "/path/transformer"
|
||||
# (6) 在网页上设置启动文件为 "train.py"
|
||||
# (7) 在网页上设置"训练数据集"、"训练输出文件路径"、"作业日志路径"等
|
||||
# (8) 创建训练作业
|
||||
#
|
||||
# 在 ModelArts 上使用单卡训练
|
||||
# (1) 执行a或者b
|
||||
# a. 在 default_config.yaml 文件中设置 "enable_modelarts=True"
|
||||
# 在 default_config.yaml 文件中设置 "dataset_path='/cache/data'"
|
||||
# 在 default_config.yaml 文件中设置 "epoch_size: 52"
|
||||
# (可选)在 default_config.yaml 文件中设置 "checkpoint_url='s3://dir_to_your_pretrained/'"
|
||||
# 在 default_config.yaml 文件中设置 其他参数
|
||||
# b. 在网页上设置 "enable_modelarts=True"
|
||||
# 在网页上设置 "dataset_path='/cache/data'"
|
||||
# 在网页上设置 "epoch_size: 52"
|
||||
# (可选)在网页上设置 "checkpoint_url='s3://dir_to_your_pretrained/'"
|
||||
# 在网页上设置 其他参数
|
||||
# (2) 准备模型代码
|
||||
# (3) 如果选择微调您的模型,上传你的预训练模型到 S3 桶上
|
||||
# (4) 执行a或者b (推荐选择 a)
|
||||
# a. 第一, 将该数据集压缩为一个 ".zip" 文件。
|
||||
# 第二, 上传你的压缩数据集到 S3 桶上 (你也可以上传未压缩的数据集,但那可能会很慢。)
|
||||
# b. 上传原始数据集到 S3 桶上。
|
||||
# (数据集转换发生在训练过程中,需要花费较多的时间。每次训练的时候都会重新进行转换。)
|
||||
# (5) 在网页上设置你的代码路径为 "/path/transformer"
|
||||
# (6) 在网页上设置启动文件为 "train.py"
|
||||
# (7) 在网页上设置"训练数据集"、"训练输出文件路径"、"作业日志路径"等
|
||||
# (8) 创建训练作业
|
||||
#
|
||||
# 在 ModelArts 上使用单卡验证
|
||||
# (1) 执行a或者b
|
||||
# a. 在 default_config.yaml 文件中设置 "enable_modelarts=True"
|
||||
# 在 default_config.yaml 文件中设置 "checkpoint_url='s3://dir_to_your_trained_model/'"
|
||||
# 在 default_config.yaml 文件中设置 "checkpoint='./transformer/transformer_trained.ckpt'"
|
||||
# 在 default_config.yaml 文件中设置 "dataset_path='/cache/data'"
|
||||
# 在 default_config.yaml 文件中设置 其他参数
|
||||
# b. 在网页上设置 "enable_modelarts=True"
|
||||
# 在网页上设置 "checkpoint_url='s3://dir_to_your_trained_model/'"
|
||||
# 在网页上设置 "checkpoint='./transformer/transformer_trained.ckpt'"
|
||||
# 在网页上设置 "dataset_path='/cache/data'"
|
||||
# 在网页上设置 其他参数
|
||||
# (2) 准备模型代码
|
||||
# (3) 上传你训练好的模型到 S3 桶上
|
||||
# (4) 执行a或者b (推荐选择 a)
|
||||
# a. 第一, 将该数据集压缩为一个 ".zip" 文件。
|
||||
# 第二, 上传你的压缩数据集到 S3 桶上 (你也可以上传未压缩的数据集,但那可能会很慢。)
|
||||
# b. 上传原始数据集到 S3 桶上。
|
||||
# (数据集转换发生在训练过程中,需要花费较多的时间。每次训练的时候都会重新进行转换。)
|
||||
# (5) 在网页上设置你的代码路径为 "/path/transformer"
|
||||
# (6) 在网页上设置启动文件为 "train.py"
|
||||
# (7) 在网页上设置"训练数据集"、"训练输出文件路径"、"作业日志路径"等
|
||||
# (8) 创建训练作业
|
||||
```
|
||||
|
||||
- 在 ModelArts 进行导出 (如果你想在modelarts上运行,可以参考以下文档 [modelarts](https://support.huaweicloud.com/modelarts/))
|
||||
|
||||
1. 使用voc val数据集评估多尺度和翻转s8。评估步骤如下:
|
||||
|
||||
```python
|
||||
# (1) 执行 a 或者 b.
|
||||
# a. 在 base_config.yaml 文件中设置 "enable_modelarts=True"
|
||||
# 在 base_config.yaml 文件中设置 "file_name='transformer'"
|
||||
# 在 base_config.yaml 文件中设置 "file_format='AIR'"
|
||||
# 在 base_config.yaml 文件中设置 "checkpoint_url='/The path of checkpoint in S3/'"
|
||||
# 在 base_config.yaml 文件中设置 "ckpt_file='/cache/checkpoint_path/model.ckpt'"
|
||||
# 在 base_config.yaml 文件中设置 其他参数
|
||||
# b. 在网页上设置 "enable_modelarts=True"
|
||||
# 在网页上设置 "file_name='transformer'"
|
||||
# 在网页上设置 "file_format='AIR'"
|
||||
# 在网页上设置 "checkpoint_url='/The path of checkpoint in S3/'"
|
||||
# 在网页上设置 "ckpt_file='/cache/checkpoint_path/model.ckpt'"
|
||||
# 在网页上设置 其他参数
|
||||
# (2) 上传你的预训练模型到 S3 桶上
|
||||
# (3) 在网页上设置你的代码路径为 "/path/transformer"
|
||||
# (4) 在网页上设置启动文件为 "export.py"
|
||||
# (5) 在网页上设置"训练数据集"、"训练输出文件路径"、"作业日志路径"等
|
||||
# (6) 创建训练作业
|
||||
```
|
||||
|
||||
## 脚本说明
|
||||
|
||||
### 脚本和样例代码
|
||||
|
@ -91,7 +194,6 @@ python eval.py > eval.log 2>&1 &
|
|||
├─src
|
||||
├─__init__.py
|
||||
├─beam_search.py
|
||||
├─config.py
|
||||
├─dataset.py
|
||||
├─eval_config.py
|
||||
├─lr_schedule.py
|
||||
|
@ -99,7 +201,15 @@ python eval.py > eval.log 2>&1 &
|
|||
├─tokenization.py
|
||||
├─transformer_for_train.py
|
||||
├─transformer_model.py
|
||||
└─weight_init.py
|
||||
├─weight_init.py
|
||||
└─model_utils
|
||||
├─config.py
|
||||
├─device_adapter.py
|
||||
├─local_adapter.py
|
||||
└─moxing_adapter.py
|
||||
├─default_config.yaml
|
||||
├─default_config_large.yaml
|
||||
├─default_config_large_gpu.yaml
|
||||
├─create_data.py
|
||||
├─eval.py
|
||||
├─export.py
|
||||
|
@ -221,7 +331,7 @@ Parameters for learning rate:
|
|||
- 运行`run_distribute_train_ascend.sh`,进行Transformer模型的非分布式训练。
|
||||
|
||||
``` bash
|
||||
sh scripts/run_distribute_train_ascend.sh DEVICE_NUM EPOCH_SIZE DATA_PATH RANK_TABLE_FILE
|
||||
sh scripts/run_distribute_train_ascend.sh DEVICE_NUM EPOCH_SIZE DATA_PATH RANK_TABLE_FILE CONFIG_PATH
|
||||
```
|
||||
|
||||
**注意**:由于网络输入中有不同句长的数据,所以数据下沉模式不可使用。
|
||||
|
|
Loading…
Reference in New Issue