Add a st for inversion attack

This commit is contained in:
jin-xiulang 2021-07-16 09:12:47 +08:00
parent 7d40236e73
commit bedb4956e5
2 changed files with 113 additions and 0 deletions

View File

@ -0,0 +1,113 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
This test is used to monitor inversion attack method of MindArmour.
"""
import numpy as np
import pytest
import mindspore.context as context
from mindspore.nn import Cell, MSELoss
from mindspore.ops import operations as P
from mindspore.ops.composite import GradOperation
from mindspore import Tensor
class GradWrapWithLoss(Cell):
def __init__(self, network):
super(GradWrapWithLoss, self).__init__()
self._grad_all = GradOperation(get_all=True, sens_param=False)
self._network = network
def construct(self, inputs, labels):
gout = self._grad_all(self._network)(inputs, labels)
return gout[0]
class AddNet(Cell):
def __init__(self):
super(AddNet, self).__init__()
self._add = P.Add()
def construct(self, inputs):
out = self._add(inputs, inputs)
return out
class InversionLoss(Cell):
def __init__(self, network, weights):
super(InversionLoss, self).__init__()
self._network = network
self._mse_loss = MSELoss()
self._weights = weights
self._get_shape = P.Shape()
self._zeros = P.ZerosLike()
self._device_target = context.get_context("device_target")
def construct(self, input_data, target_features):
output = self._network(input_data)
loss_1 = self._mse_loss(output, target_features) / self._mse_loss(target_features, self._zeros(target_features))
data_shape = self._get_shape(input_data)
if self._device_target == 'CPU':
split_op_1 = P.Split(2, data_shape[2])
split_op_2 = P.Split(3, data_shape[3])
data_split_1 = split_op_1(input_data)
data_split_2 = split_op_2(input_data)
loss_2 = 0
for i in range(1, data_shape[2]):
loss_2 += self._mse_loss(data_split_1[i], data_split_1[i - 1])
for j in range(1, data_shape[3]):
loss_2 += self._mse_loss(data_split_2[j], data_split_2[j - 1])
else:
data_copy_1 = self._zeros(input_data)
data_copy_2 = self._zeros(input_data)
data_copy_1[:, :, :(data_shape[2] - 1), :] = input_data[:, :, 1:, :]
data_copy_2[:, :, :, :(data_shape[2] - 1)] = input_data[:, :, :, 1:]
loss_2 = self._mse_loss(input_data, data_copy_1) + self._mse_loss(input_data, data_copy_2)
loss_3 = self._mse_loss(input_data, self._zeros(input_data))
loss = loss_1*self._weights[0] + loss_2*self._weights[1] + loss_3*self._weights[2]
return loss
class ImageInversionAttack:
def __init__(self, network, input_shape, loss_weights=(1, 0.2, 5)):
self._network = network
self._loss = InversionLoss(self._network, loss_weights)
self._input_shape = input_shape
def generate(self, target_features):
target_features = target_features
img_num = target_features.shape[0]
test_input = np.random.random((img_num,) + self._input_shape).astype(np.float32)
loss_net = self._loss
loss_grad = GradWrapWithLoss(loss_net)
x_grad = loss_grad(Tensor(test_input), Tensor(target_features)).asnumpy()
return x_grad
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_loss_grad_graph():
context.set_context(mode=context.GRAPH_MODE)
net = AddNet()
target_features = np.random.random((1, 32, 32)).astype(np.float32)
inversion_attack = ImageInversionAttack(net, input_shape=(1, 32, 32))
grads = inversion_attack.generate(target_features)
assert np.any(grads != 0), 'grad result can not be all zeros'