!19117 SetDebugger for MindRTBackend and clean debug_actor code
Merge pull request !19117 from parastooashtari/new_unified_gpu
This commit is contained in:
commit
bde38a582c
|
@ -42,6 +42,7 @@ if(ENABLE_DEBUGGER)
|
|||
"${CMAKE_CURRENT_SOURCE_DIR}/debugger/proto_exporter.cc"
|
||||
"${CMAKE_CURRENT_SOURCE_DIR}/debugger/tensor_summary.cc"
|
||||
"${CMAKE_CURRENT_SOURCE_DIR}/debug_services.cc"
|
||||
"${CMAKE_CURRENT_SOURCE_DIR}/debugger/debugger_utils.cc"
|
||||
)
|
||||
endif()
|
||||
if(NOT CMAKE_SYSTEM_NAME MATCHES "Windows")
|
||||
|
|
|
@ -236,9 +236,6 @@ bool Debugger::CheckDebuggerDumpEnabled() const {
|
|||
// see if dump is enabled
|
||||
if (device_target_ == kGPUDevice) {
|
||||
return device::KernelRuntime::DumpDataEnabled();
|
||||
} else if (MsContext::GetInstance()->get_param<bool>(MS_CTX_ENABLE_MINDRT)) {
|
||||
auto &dump_json_parser = DumpJsonParser::GetInstance();
|
||||
return dump_json_parser.e2e_dump_enabled();
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
|
|
@ -0,0 +1,159 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "debug/debugger/debugger_utils.h"
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include "debug/debugger/debugger.h"
|
||||
#include "runtime/device/gpu/gpu_device_address.h"
|
||||
#include "debug/data_dump/dump_json_parser.h"
|
||||
#include "backend/session/anf_runtime_algorithm.h"
|
||||
#include "backend/kernel_compiler/kernel.h"
|
||||
|
||||
using mindspore::kernel::AddressPtr;
|
||||
using mindspore::kernel::KernelLaunchInfo;
|
||||
using AddressPtrList = std::vector<mindspore::kernel::AddressPtr>;
|
||||
using KernelGraph = mindspore::session::KernelGraph;
|
||||
using AnfAlgo = mindspore::session::AnfRuntimeAlgorithm;
|
||||
|
||||
namespace mindspore {
|
||||
|
||||
static const size_t PARAMETER_OUTPUT_INDEX = 0;
|
||||
|
||||
std::vector<int> CheckRealOutput(const std::string &node_name, const size_t &output_size) {
|
||||
// define a vector containing real output number
|
||||
std::vector<int> real_outputs;
|
||||
// P.BatchNorm is used for training and inference
|
||||
// can add the filter list for more operators here....
|
||||
if (node_name == "BatchNorm") {
|
||||
MS_LOG(INFO) << "loading node named " << node_name;
|
||||
real_outputs.insert(real_outputs.end(), {0, 3, 4});
|
||||
} else {
|
||||
// by default, TensorLoader will load all outputs
|
||||
for (size_t j = 0; j < output_size; ++j) {
|
||||
real_outputs.push_back(j);
|
||||
}
|
||||
}
|
||||
return real_outputs;
|
||||
}
|
||||
void LoadInputs(const CNodePtr &cnode, const KernelLaunchInfo *launch_info_, uint32_t exec_order_) {
|
||||
// get inputs
|
||||
auto kernel_inputs = launch_info_->inputs_;
|
||||
auto input_size = AnfAlgo::GetInputTensorNum(cnode);
|
||||
for (size_t j = 0; j < input_size; ++j) {
|
||||
auto input_kernel = cnode->input(j + 1);
|
||||
std::string input_kernel_name = input_kernel->fullname_with_scope();
|
||||
auto addr = kernel_inputs[j];
|
||||
auto type = AnfAlgo::GetOutputInferDataType(input_kernel, PARAMETER_OUTPUT_INDEX);
|
||||
// For example, this happens with the Depend op
|
||||
if (type == kMetaTypeNone) {
|
||||
continue;
|
||||
}
|
||||
#ifdef ENABLE_GPU
|
||||
auto format = kOpFormat_DEFAULT;
|
||||
auto gpu_addr = std::make_unique<device::gpu::GPUDeviceAddress>(addr->addr, addr->size, format, type);
|
||||
string input_tensor_name = input_kernel_name + ':' + "0";
|
||||
ShapeVector int_shapes = trans::GetRuntimePaddingShape(input_kernel, PARAMETER_OUTPUT_INDEX);
|
||||
auto ret = gpu_addr->LoadMemToHost(input_tensor_name, exec_order_, format, int_shapes, type, 0, true);
|
||||
if (!ret) {
|
||||
MS_LOG(ERROR) << "LoadMemToHost:"
|
||||
<< ", tensor_name:" << input_tensor_name << ", host_format:" << format << ".!";
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
void LoadOutputs(const CNodePtr &cnode, const KernelLaunchInfo *launch_info_, uint32_t exec_order_) {
|
||||
// get outputs
|
||||
auto kernel_outputs = launch_info_->outputs_;
|
||||
auto output_size = AnfAlgo::GetOutputTensorNum(cnode);
|
||||
auto node_name = AnfAlgo::GetCNodeName(cnode);
|
||||
std::string kernel_name = cnode->fullname_with_scope();
|
||||
std::vector<int> real_outputs = CheckRealOutput(node_name, output_size);
|
||||
|
||||
for (int j : real_outputs) {
|
||||
auto addr = kernel_outputs[j];
|
||||
auto type = AnfAlgo::GetOutputInferDataType(cnode, j);
|
||||
// For example, this happens with the Depend op
|
||||
if (type == kMetaTypeNone) {
|
||||
continue;
|
||||
}
|
||||
#ifdef ENABLE_GPU
|
||||
auto format = kOpFormat_DEFAULT;
|
||||
auto gpu_addr = std::make_unique<device::gpu::GPUDeviceAddress>(addr->addr, addr->size, format, type);
|
||||
string tensor_name = kernel_name + ':' + std::to_string(j);
|
||||
ShapeVector int_shapes = trans::GetRuntimePaddingShape(cnode, j);
|
||||
auto ret = gpu_addr->LoadMemToHost(tensor_name, exec_order_, format, int_shapes, type, j, false);
|
||||
if (!ret) {
|
||||
MS_LOG(ERROR) << "LoadMemToHost:"
|
||||
<< ", tensor_name:" << tensor_name << ", host_format:" << format << ".!";
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
bool CheckReadData(const CNodePtr &cnode) {
|
||||
auto debugger = Debugger::GetInstance();
|
||||
if (!debugger) {
|
||||
return false;
|
||||
}
|
||||
bool read_data = false;
|
||||
auto &dump_json_parser = DumpJsonParser::GetInstance();
|
||||
bool dump_enabled = debugger->DumpDataEnabledIteration();
|
||||
std::string kernel_name = cnode->fullname_with_scope();
|
||||
if (dump_enabled) {
|
||||
auto dump_mode = dump_json_parser.dump_mode();
|
||||
// dump the node if dump_mode is 0, which means all kernels, or if this kernel is in the kernels list
|
||||
if ((dump_mode == 0) || ((dump_mode == 1) && dump_json_parser.NeedDump(kernel_name))) {
|
||||
read_data = true;
|
||||
}
|
||||
} else if (debugger->debugger_enabled()) {
|
||||
read_data = debugger->ReadNodeDataRequired(cnode);
|
||||
}
|
||||
return read_data;
|
||||
}
|
||||
|
||||
void ReadDataAndDump(const CNodePtr &cnode, const KernelLaunchInfo *launch_info_, uint32_t exec_order_) {
|
||||
auto debugger = Debugger::GetInstance();
|
||||
if (!debugger) {
|
||||
return;
|
||||
}
|
||||
auto &dump_json_parser = DumpJsonParser::GetInstance();
|
||||
bool dump_enabled = debugger->DumpDataEnabledIteration();
|
||||
if (debugger->debugger_enabled() || dump_json_parser.InputNeedDump()) {
|
||||
LoadInputs(cnode, launch_info_, exec_order_);
|
||||
}
|
||||
if (debugger->debugger_enabled() || dump_json_parser.OutputNeedDump()) {
|
||||
LoadOutputs(cnode, launch_info_, exec_order_);
|
||||
}
|
||||
// Dump kernel
|
||||
if (dump_enabled) {
|
||||
auto kernel_graph = std::dynamic_pointer_cast<KernelGraph>(cnode->func_graph());
|
||||
MS_EXCEPTION_IF_NULL(kernel_graph);
|
||||
auto graph_id = kernel_graph->graph_id();
|
||||
debugger->DumpSingleNode(cnode, graph_id);
|
||||
// Clear Dumped data when online debugger is not enabled
|
||||
if (!debugger->debugger_enabled()) {
|
||||
debugger->ClearCurrentData();
|
||||
}
|
||||
}
|
||||
// check if the node is last kernel
|
||||
bool last_kernel = !AnfAlgo::IsInplaceNode(cnode, "skip");
|
||||
debugger->PostExecuteNode(cnode, last_kernel);
|
||||
}
|
||||
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,37 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include "debug/debugger/debugger.h"
|
||||
#include "backend/kernel_compiler/kernel.h"
|
||||
|
||||
using mindspore::kernel::KernelLaunchInfo;
|
||||
|
||||
namespace mindspore {
|
||||
|
||||
std::vector<int> CheckRealOutput(const std::string &node_name, const size_t &output_size);
|
||||
|
||||
void LoadInputs(const CNodePtr &cnode, const KernelLaunchInfo *launch_info_, uint32_t exec_order_);
|
||||
|
||||
void LoadOutputs(const CNodePtr &cnode, const KernelLaunchInfo *launch_info_, uint32_t exec_order_);
|
||||
|
||||
bool CheckReadData(const CNodePtr &cnode);
|
||||
|
||||
void ReadDataAndDump(const CNodePtr &cnode, const KernelLaunchInfo *launch_info_, uint32_t exec_order_);
|
||||
|
||||
} // namespace mindspore
|
|
@ -21,138 +21,14 @@
|
|||
#include "runtime/framework/actor/debug_aware_actor.h"
|
||||
#include "mindrt/include/async/async.h"
|
||||
#include "utils/log_adapter.h"
|
||||
#ifdef ENABLE_GPU
|
||||
#ifdef ENABLE_DEBUGGER
|
||||
#include "debug/debugger/debugger.h"
|
||||
#include "runtime/device/gpu/gpu_device_address.h"
|
||||
|
||||
using mindspore::kernel::AddressPtr;
|
||||
using AddressPtrList = std::vector<mindspore::kernel::AddressPtr>;
|
||||
using KernelGraph = mindspore::session::KernelGraph;
|
||||
#include "debug/debugger/debugger_utils.h"
|
||||
#endif
|
||||
|
||||
namespace mindspore {
|
||||
namespace runtime {
|
||||
|
||||
#ifdef ENABLE_GPU
|
||||
static const size_t PARAMETER_OUTPUT_INDEX = 0;
|
||||
|
||||
std::vector<int> CheckRealOutput(const std::string &node_name, const size_t &output_size) {
|
||||
// define a vector containing real output number
|
||||
std::vector<int> real_outputs;
|
||||
// P.BatchNorm is used for training and inference
|
||||
// can add the filter list for more operators here....
|
||||
if (node_name == "BatchNorm") {
|
||||
MS_LOG(INFO) << "loading node named " << node_name;
|
||||
real_outputs.insert(real_outputs.end(), {0, 3, 4});
|
||||
} else {
|
||||
// by default, TensorLoader will load all outputs
|
||||
for (size_t j = 0; j < output_size; ++j) {
|
||||
real_outputs.push_back(j);
|
||||
}
|
||||
}
|
||||
return real_outputs;
|
||||
}
|
||||
void LoadInputs(const CNodePtr &cnode, const KernelLaunchInfo *launch_info_, uint32_t exec_order_) {
|
||||
// get inputs
|
||||
auto kernel_inputs = launch_info_->inputs_;
|
||||
auto input_size = AnfAlgo::GetInputTensorNum(cnode);
|
||||
for (size_t j = 0; j < input_size; ++j) {
|
||||
auto input_kernel = cnode->input(j + 1);
|
||||
std::string input_kernel_name = input_kernel->fullname_with_scope();
|
||||
auto addr = kernel_inputs[j];
|
||||
auto type = AnfAlgo::GetOutputInferDataType(input_kernel, PARAMETER_OUTPUT_INDEX);
|
||||
// For example, this happens with the Depend op
|
||||
if (type == kMetaTypeNone) {
|
||||
continue;
|
||||
}
|
||||
auto format = kOpFormat_DEFAULT;
|
||||
auto gpu_addr = std::make_unique<device::gpu::GPUDeviceAddress>(addr->addr, addr->size, format, type);
|
||||
string input_tensor_name = input_kernel_name + ':' + "0";
|
||||
ShapeVector int_shapes = trans::GetRuntimePaddingShape(input_kernel, PARAMETER_OUTPUT_INDEX);
|
||||
auto ret = gpu_addr->LoadMemToHost(input_tensor_name, exec_order_, format, int_shapes, type, 0, true);
|
||||
if (!ret) {
|
||||
MS_LOG(ERROR) << "LoadMemToHost:"
|
||||
<< ", tensor_name:" << input_tensor_name << ", host_format:" << format << ".!";
|
||||
}
|
||||
}
|
||||
}
|
||||
void LoadOutputs(const CNodePtr &cnode, const KernelLaunchInfo *launch_info_, uint32_t exec_order_) {
|
||||
// get outputs
|
||||
auto kernel_outputs = launch_info_->outputs_;
|
||||
auto output_size = AnfAlgo::GetOutputTensorNum(cnode);
|
||||
auto node_name = AnfAlgo::GetCNodeName(cnode);
|
||||
std::string kernel_name = cnode->fullname_with_scope();
|
||||
std::vector<int> real_outputs = CheckRealOutput(node_name, output_size);
|
||||
|
||||
for (int j : real_outputs) {
|
||||
auto addr = kernel_outputs[j];
|
||||
auto type = AnfAlgo::GetOutputInferDataType(cnode, j);
|
||||
// For example, this happens with the Depend op
|
||||
if (type == kMetaTypeNone) {
|
||||
continue;
|
||||
}
|
||||
auto format = kOpFormat_DEFAULT;
|
||||
auto gpu_addr = std::make_unique<device::gpu::GPUDeviceAddress>(addr->addr, addr->size, format, type);
|
||||
string tensor_name = kernel_name + ':' + std::to_string(j);
|
||||
ShapeVector int_shapes = trans::GetRuntimePaddingShape(cnode, j);
|
||||
auto ret = gpu_addr->LoadMemToHost(tensor_name, exec_order_, format, int_shapes, type, j, false);
|
||||
if (!ret) {
|
||||
MS_LOG(ERROR) << "LoadMemToHost:"
|
||||
<< ", tensor_name:" << tensor_name << ", host_format:" << format << ".!";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool CheckReadData(const CNodePtr &cnode) {
|
||||
auto debugger = Debugger::GetInstance();
|
||||
if (!debugger) {
|
||||
return false;
|
||||
}
|
||||
bool read_data = false;
|
||||
auto &dump_json_parser = DumpJsonParser::GetInstance();
|
||||
bool dump_enabled = debugger->DumpDataEnabledIteration();
|
||||
std::string kernel_name = cnode->fullname_with_scope();
|
||||
if (dump_enabled) {
|
||||
auto dump_mode = dump_json_parser.dump_mode();
|
||||
// dump the node if dump_mode is 0, which means all kernels, or if this kernel is in the kernels list
|
||||
if ((dump_mode == 0) || ((dump_mode == 1) && dump_json_parser.NeedDump(kernel_name))) {
|
||||
read_data = true;
|
||||
}
|
||||
} else if (debugger->debugger_enabled()) {
|
||||
read_data = debugger->ReadNodeDataRequired(cnode);
|
||||
}
|
||||
return read_data;
|
||||
}
|
||||
|
||||
void ReadDataAndDump(const CNodePtr &cnode, const KernelLaunchInfo *launch_info_, uint32_t exec_order_) {
|
||||
auto debugger = Debugger::GetInstance();
|
||||
if (!debugger) {
|
||||
return;
|
||||
}
|
||||
auto &dump_json_parser = DumpJsonParser::GetInstance();
|
||||
bool dump_enabled = debugger->DumpDataEnabledIteration();
|
||||
if (debugger->debugger_enabled() || dump_json_parser.InputNeedDump()) {
|
||||
LoadInputs(cnode, launch_info_, exec_order_);
|
||||
}
|
||||
if (debugger->debugger_enabled() || dump_json_parser.OutputNeedDump()) {
|
||||
LoadOutputs(cnode, launch_info_, exec_order_);
|
||||
}
|
||||
// Dump kernel
|
||||
if (dump_enabled) {
|
||||
auto kernel_graph = std::dynamic_pointer_cast<KernelGraph>(cnode->func_graph());
|
||||
MS_EXCEPTION_IF_NULL(kernel_graph);
|
||||
auto graph_id = kernel_graph->graph_id();
|
||||
debugger->DumpSingleNode(cnode, graph_id);
|
||||
// Clear Dumped data when online debugger is not enabled
|
||||
if (!debugger->debugger_enabled()) {
|
||||
debugger->ClearCurrentData();
|
||||
}
|
||||
}
|
||||
// check if the node is last kernel
|
||||
bool last_kernel = !AnfAlgo::IsInplaceNode(cnode, "skip");
|
||||
debugger->PostExecuteNode(cnode, last_kernel);
|
||||
}
|
||||
#endif
|
||||
|
||||
void DebugActor::Debug(const AnfNodePtr &node, const KernelLaunchInfo *launch_info_,
|
||||
const DeviceContext *device_context, OpContext<DeviceTensor> *op_context, const AID *from_aid) {
|
||||
MS_EXCEPTION_IF_NULL(node);
|
||||
|
@ -160,14 +36,12 @@ void DebugActor::Debug(const AnfNodePtr &node, const KernelLaunchInfo *launch_in
|
|||
MS_EXCEPTION_IF_NULL(op_context);
|
||||
MS_EXCEPTION_IF_NULL(from_aid);
|
||||
// todo debug.
|
||||
MS_LOG(INFO) << "DebugActor is called";
|
||||
#ifdef ENABLE_GPU
|
||||
#ifdef ENABLE_DEBUGGER
|
||||
if (node->isa<CNode>()) {
|
||||
const auto &cnode = node->cast<CNodePtr>();
|
||||
auto debugger = Debugger::GetInstance();
|
||||
if (debugger) {
|
||||
std::string kernel_name = cnode->fullname_with_scope();
|
||||
MS_LOG(INFO) << "kernel_name is " << kernel_name;
|
||||
debugger->SetCurNode(kernel_name);
|
||||
bool read_data = CheckReadData(cnode);
|
||||
if (read_data) {
|
||||
|
@ -185,8 +59,7 @@ void DebugActor::DebugOnStepEnd(OpContext<DeviceTensor> *op_context, const AID *
|
|||
MS_EXCEPTION_IF_NULL(op_context);
|
||||
MS_EXCEPTION_IF_NULL(from_aid);
|
||||
// todo debug.
|
||||
MS_LOG(INFO) << "DebugActor::DebugOnStepEnd is called";
|
||||
#ifdef ENABLE_GPU
|
||||
#ifdef ENABLE_DEBUGGER
|
||||
auto debugger = Debugger::GetInstance();
|
||||
if (debugger) {
|
||||
debugger->Debugger::UpdateStepNumGPU();
|
||||
|
|
|
@ -285,7 +285,9 @@ MindRTBackend::MindRTBackend(const std::string &backend_name, const std::string
|
|||
device::DeviceContextManager::GetInstance().GetOrCreateDeviceContext({device_name, device_id});
|
||||
device_context->Initialize();
|
||||
device_id_ = device_context->device_context_key().device_id_;
|
||||
|
||||
#ifdef ENABLE_DEBUGGER
|
||||
SetDebuggerInit();
|
||||
#endif
|
||||
runtime::GraphScheduler::GetInstance().Initialize();
|
||||
}
|
||||
|
||||
|
@ -688,7 +690,7 @@ void MindRTBackend::ConstructOutputs(const AnfNodePtr &output_node,
|
|||
}
|
||||
|
||||
#ifdef ENABLE_DEBUGGER
|
||||
void MindRTBackend::SetDebugger() {
|
||||
void MindRTBackend::SetDebuggerInit() {
|
||||
auto debugger_ = Debugger::GetInstance();
|
||||
auto ms_context = MsContext::GetInstance();
|
||||
MS_EXCEPTION_IF_NULL(ms_context);
|
||||
|
|
|
@ -120,7 +120,7 @@ class MindRTBackend : public Backend {
|
|||
void RunGraph(const ActorInfo &actor_info, OpRunInfo *op_run_info, const std::vector<int64_t> *tensors_mask,
|
||||
const std::vector<tensor::TensorPtr> *input_tensors, VectorRef *outputs);
|
||||
#ifdef ENABLE_DEBUGGER
|
||||
void SetDebugger() override;
|
||||
void SetDebuggerInit();
|
||||
#endif
|
||||
|
||||
private:
|
||||
|
|
Loading…
Reference in New Issue