fix and remove useless import of example, st, ut
This commit is contained in:
parent
9be1a01db6
commit
bc4602b58e
|
@ -36,7 +36,7 @@ import os
|
|||
import numpy as np
|
||||
from config import bert_train_cfg, bert_net_cfg
|
||||
import mindspore.dataset.engine.datasets as de
|
||||
import mindspore._c_dataengine as deMap
|
||||
import mindspore.dataset.transforms.c_transforms as C
|
||||
from mindspore import context
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.train.model import Model
|
||||
|
@ -52,7 +52,7 @@ def create_train_dataset(batch_size):
|
|||
ds = de.StorageDataset([bert_train_cfg.DATA_DIR], bert_train_cfg.SCHEMA_DIR,
|
||||
columns_list=["input_ids", "input_mask", "segment_ids", "next_sentence_labels",
|
||||
"masked_lm_positions", "masked_lm_ids", "masked_lm_weights"])
|
||||
type_cast_op = deMap.TypeCastOp("int32")
|
||||
type_cast_op = C.TypeCast(mstype.int32)
|
||||
ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op)
|
||||
ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op)
|
||||
ds = ds.map(input_columns="next_sentence_labels", operations=type_cast_op)
|
||||
|
|
|
@ -24,8 +24,7 @@ import numpy as np
|
|||
import mindspore.ops.functional as F
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
import mindspore.dataengine as de
|
||||
import mindspore._c_dataengine as deMap
|
||||
import mindspore.dataset as de
|
||||
import mindspore.dataset.transforms.c_transforms as C
|
||||
import mindspore.dataset.transforms.vision.c_transforms as vision
|
||||
from mindspore.communication.management import init
|
||||
|
|
|
@ -24,8 +24,7 @@ import numpy as np
|
|||
import mindspore.ops.functional as F
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
import mindspore.dataengine as de
|
||||
import mindspore._c_dataengine as deMap
|
||||
import mindspore.dataset as de
|
||||
import mindspore.dataset.transforms.c_transforms as C
|
||||
import mindspore.dataset.transforms.vision.c_transforms as vision
|
||||
from mindspore.communication.management import init
|
||||
|
|
|
@ -21,7 +21,7 @@ import numpy as np
|
|||
from numpy import allclose
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.dataset.engine.datasets as de
|
||||
import mindspore._c_dataengine as deMap
|
||||
import mindspore.dataset.transforms.c_transforms as C
|
||||
from mindspore import context
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.train.model import Model
|
||||
|
@ -106,7 +106,7 @@ def me_de_train_dataset():
|
|||
ds = de.StorageDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids",
|
||||
"next_sentence_labels", "masked_lm_positions",
|
||||
"masked_lm_ids", "masked_lm_weights"])
|
||||
type_cast_op = deMap.TypeCastOp("int32")
|
||||
type_cast_op = C.TypeCast(mstype.int32)
|
||||
ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op)
|
||||
ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op)
|
||||
ds = ds.map(input_columns="next_sentence_labels", operations=type_cast_op)
|
||||
|
|
|
@ -12,11 +12,11 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import mindspore._c_dataengine as deMap
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.vision.c_transforms as vision
|
||||
from mindspore.dataset.transforms.vision import Inter
|
||||
import numpy as np
|
||||
import sys
|
||||
from mindspore._c_dataengine import InterpolationMode
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
|
@ -32,7 +32,7 @@ SCHEMA_DIR = "{0}/resnet_all_datasetSchema.json".format(data_path)
|
|||
def test_me_de_train_dataset():
|
||||
data_list = ["{0}/train-00001-of-01024.data".format(data_path)]
|
||||
data_set = ds.StorageDataset(data_list, schema=SCHEMA_DIR,
|
||||
columns_list=["image/encoded", "image/class/label"])
|
||||
columns_list=["image/encoded", "image/class/label"])
|
||||
|
||||
resize_height = 224
|
||||
resize_width = 224
|
||||
|
@ -41,19 +41,17 @@ def test_me_de_train_dataset():
|
|||
|
||||
# define map operations
|
||||
|
||||
decode_op = deMap.DecodeOp()
|
||||
resize_op = deMap.ResizeOp(resize_height, resize_width,
|
||||
InterpolationMode.DE_INTER_LINEAR) # Bilinear as default
|
||||
rescale_op = deMap.RescaleOp(rescale, shift)
|
||||
changemode_op = deMap.ChangeModeOp()
|
||||
decode_op = vision.Decode()
|
||||
resize_op = vision.Resize(resize_height, resize_width,
|
||||
Inter.LINEAR) # Bilinear as default
|
||||
rescale_op = vision.Rescale(rescale, shift)
|
||||
|
||||
# apply map operations on images
|
||||
data_set = data_set.map(input_column_names="image/encoded", operation=decode_op)
|
||||
data_set = data_set.map(input_column_names="image/encoded", operation=resize_op)
|
||||
data_set = data_set.map(input_column_names="image/encoded", operation=rescale_op)
|
||||
data_set = data_set.map(input_column_names="image/encoded", operation=changemode_op)
|
||||
changeswap_op = deMap.ChannelSwapOp()
|
||||
data_set = data_set.map(input_column_names="image/encoded", operation=changeswap_op)
|
||||
data_set = data_set.map(input_columns="image/encoded", operations=decode_op)
|
||||
data_set = data_set.map(input_columns="image/encoded", operations=resize_op)
|
||||
data_set = data_set.map(input_columns="image/encoded", operations=rescale_op)
|
||||
hwc2chw_op = vision.HWC2CHW()
|
||||
data_set = data_set.map(input_columns="image/encoded", operations=hwc2chw_op)
|
||||
data_set = data_set.repeat(1)
|
||||
# apply batch operations
|
||||
batch_size = 32
|
||||
|
|
|
@ -24,7 +24,6 @@ import string
|
|||
import mindspore.dataset.transforms.vision.c_transforms as vision
|
||||
import numpy as np
|
||||
import pytest
|
||||
from mindspore._c_dataengine import InterpolationMode
|
||||
from mindspore.dataset.transforms.vision import Inter
|
||||
from mindspore import log as logger
|
||||
|
||||
|
|
|
@ -13,7 +13,8 @@
|
|||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
import mindspore.dataset.transforms.vision.c_transforms as vision
|
||||
import mindspore._c_dataengine as de_map
|
||||
import mindspore.dataset.transforms.c_transforms as C
|
||||
from mindspore.common import dtype as mstype
|
||||
from util import ordered_save_and_check
|
||||
|
||||
import mindspore.dataset as ds
|
||||
|
@ -63,9 +64,8 @@ def test_case_project_map():
|
|||
data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
|
||||
data1 = data1.project(columns=columns)
|
||||
|
||||
no_op = de_map.NoOp()
|
||||
|
||||
data1 = data1.map(input_columns=["col_3d"], operations=no_op)
|
||||
type_cast_op = C.TypeCast(mstype.int64)
|
||||
data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op)
|
||||
|
||||
filename = "project_map_after_result.npz"
|
||||
ordered_save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
@ -77,8 +77,8 @@ def test_case_map_project():
|
|||
|
||||
data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
|
||||
|
||||
no_op = de_map.NoOp()
|
||||
data1 = data1.map(input_columns=["col_sint64"], operations=no_op)
|
||||
type_cast_op = C.TypeCast(mstype.int64)
|
||||
data1 = data1.map(input_columns=["col_sint64"], operations=type_cast_op)
|
||||
|
||||
data1 = data1.project(columns=columns)
|
||||
|
||||
|
@ -92,19 +92,19 @@ def test_case_project_between_maps():
|
|||
|
||||
data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
|
||||
|
||||
no_op = de_map.NoOp()
|
||||
data1 = data1.map(input_columns=["col_3d"], operations=no_op)
|
||||
data1 = data1.map(input_columns=["col_3d"], operations=no_op)
|
||||
data1 = data1.map(input_columns=["col_3d"], operations=no_op)
|
||||
data1 = data1.map(input_columns=["col_3d"], operations=no_op)
|
||||
type_cast_op = C.TypeCast(mstype.int64)
|
||||
data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op)
|
||||
data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op)
|
||||
data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op)
|
||||
data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op)
|
||||
|
||||
data1 = data1.project(columns=columns)
|
||||
|
||||
data1 = data1.map(input_columns=["col_3d"], operations=no_op)
|
||||
data1 = data1.map(input_columns=["col_3d"], operations=no_op)
|
||||
data1 = data1.map(input_columns=["col_3d"], operations=no_op)
|
||||
data1 = data1.map(input_columns=["col_3d"], operations=no_op)
|
||||
data1 = data1.map(input_columns=["col_3d"], operations=no_op)
|
||||
data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op)
|
||||
data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op)
|
||||
data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op)
|
||||
data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op)
|
||||
data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op)
|
||||
|
||||
filename = "project_between_maps_result.npz"
|
||||
ordered_save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
@ -145,12 +145,12 @@ def test_case_map_project_map_project():
|
|||
|
||||
data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
|
||||
|
||||
no_op = de_map.NoOp()
|
||||
data1 = data1.map(input_columns=["col_sint64"], operations=no_op)
|
||||
type_cast_op = C.TypeCast(mstype.int64)
|
||||
data1 = data1.map(input_columns=["col_sint64"], operations=type_cast_op)
|
||||
|
||||
data1 = data1.project(columns=columns)
|
||||
|
||||
data1 = data1.map(input_columns=["col_2d"], operations=no_op)
|
||||
data1 = data1.map(input_columns=["col_2d"], operations=type_cast_op)
|
||||
|
||||
data1 = data1.project(columns=columns)
|
||||
|
||||
|
|
Loading…
Reference in New Issue