diff --git a/mindspore/nn/__init__.py b/mindspore/nn/__init__.py index 5bd9e3e24ff..7f69bc86d18 100644 --- a/mindspore/nn/__init__.py +++ b/mindspore/nn/__init__.py @@ -35,5 +35,4 @@ __all__.extend(metrics.__all__) __all__.extend(wrap.__all__) __all__.extend(sparse.__all__) - __all__.sort() diff --git a/mindspore/nn/probability/__init__.py b/mindspore/nn/probability/__init__.py index 79710b6cf24..5bc8a54c408 100644 --- a/mindspore/nn/probability/__init__.py +++ b/mindspore/nn/probability/__init__.py @@ -18,4 +18,5 @@ Probability. The high-level components used to construct the probabilistic network. """ +from . import bijector from . import distribution diff --git a/mindspore/nn/probability/bijector/__init__.py b/mindspore/nn/probability/bijector/__init__.py new file mode 100644 index 00000000000..3108742aeae --- /dev/null +++ b/mindspore/nn/probability/bijector/__init__.py @@ -0,0 +1,27 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +""" +Bijector. + +The high-level components(Bijectors) used to construct the probabilistic network. +""" + +from .bijector import Bijector +from .power_transform import PowerTransform +from .exp import Exp + +__all__ = ['Bijector', + 'PowerTransform', + 'Exp'] diff --git a/mindspore/nn/probability/bijector/bijector.py b/mindspore/nn/probability/bijector/bijector.py new file mode 100644 index 00000000000..22777231f65 --- /dev/null +++ b/mindspore/nn/probability/bijector/bijector.py @@ -0,0 +1,130 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""Bijector""" +from mindspore.nn.cell import Cell +from ..distribution import Distribution +from ..distribution import TransformedDistribution + +class Bijector(Cell): + """ + Bijecotr class. + + Args: + is_constant_jacobian (bool): if the bijector has constant derivative. Default: False. + is_injective (bool): if the bijector is an one-to-one mapping. Default: True. + name (str): name of the bijector. Default: None. + dtype (mstype): type of the distribution the bijector can operate on. Default: None. + param (dict): parameters used to initialize the bijector. Default: None. + """ + def __init__(self, + is_constant_jacobian=False, + is_injective=True, + name=None, + dtype=None, + param=None): + + """ + Constructor of bijector class. + """ + super(Bijector, self).__init__() + self._name = name + self._dtype = dtype + self._parameters = {} + # parsing parameters + for k in param.keys(): + if not(k == 'self' or k.startswith('_')): + self._parameters[k] = param[k] + self._is_constant_jacobian = is_constant_jacobian + self._is_injective = is_injective + + @property + def name(self): + return self._name + + @property + def dtype(self): + return self._dtype + + @property + def parameters(self): + return self._parameters + + @property + def is_constant_jacobian(self): + return self._is_constant_jacobian + + @property + def is_injective(self): + return self._is_injective + + def forward(self, *args): + """ + Forward transformation: transform the input value to another distribution. + """ + return self._forward(*args) + + def inverse(self, *args): + """ + Inverse transformation: transform the input value back to the original distribution. + """ + return self._inverse(*args) + + def forward_log_jacobian(self, *args): + """ + Logarithm of the derivative of forward transformation. + """ + return self._forward_log_jacobian(*args) + + def inverse_log_jacobian(self, *args): + """ + Logarithm of the derivative of forward transformation. + """ + return self._inverse_log_jacobian(*args) + + def __call__(self, *args): + """ + Call Bijector directly. + This __call__ may go into two directions: + If args[0] is a distribution instance, the call will generate a new distribution derived from + the input distribution. + Otherwise, input[0] should be the name of a bijector function, e.g. "forward", then this call will + go in the construct and invoke the correstpoding bijector function. + + Args: + *args: args[0] shall be either a distribution or the name of a bijector function. + """ + if isinstance(args[0], Distribution): + return TransformedDistribution(self, args[0]) + return super(Bijector, self).__call__(*args) + + def construct(self, name, *args): + """ + Override construct in Cell. + + Args: + *inputs: inputs[0] is always the name of a function. + + Notes: + Always raise RuntimeError as Distribution should not be called directly. + """ + if name == 'forward': + return self.forward(*args) + if name == 'inverse': + return self.inverse(*args) + if name == 'forward_log_jacobian': + return self.forward_log_jacobian(*args) + if name == 'inverse_log_jacobian': + return self.inverse_log_jacobian(*args) + return None diff --git a/mindspore/nn/probability/bijector/exp.py b/mindspore/nn/probability/bijector/exp.py new file mode 100644 index 00000000000..0f79a1abf27 --- /dev/null +++ b/mindspore/nn/probability/bijector/exp.py @@ -0,0 +1,44 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""Power Bijector""" +from .power_transform import PowerTransform + +class Exp(PowerTransform): + r""" + Exponential Bijector. + This Bijector performs the operation: Y = exp(x). + + Examples: + >>> # To initialize a Exp bijector + >>> import mindspore.nn.probability.bijector as msb + >>> n = msb.Exp() + >>> + >>> # To use Exp distribution in a network + >>> class net(Cell): + >>> def __init__(self): + >>> super(net, self).__init__(): + >>> self.e1 = msb.Exp() + >>> + >>> def construct(self, value): + >>> + >>> # Similar calls can be made to other probability functions + >>> # by replacing 'forward' with the name of the function + >>> ans1 = self.e1.forward(value) + >>> ans2 = self.e1.backward(value) + """ + def __init__(self, + name='Exp'): + param = dict(locals()) + super(Exp, self).__init__(name=name, param=param) diff --git a/mindspore/nn/probability/bijector/power_transform.py b/mindspore/nn/probability/bijector/power_transform.py new file mode 100644 index 00000000000..456f6358180 --- /dev/null +++ b/mindspore/nn/probability/bijector/power_transform.py @@ -0,0 +1,124 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""Power Bijector""" +from mindspore.ops import operations as P +from mindspore._checkparam import Validator as validator +from .bijector import Bijector + +class PowerTransform(Bijector): + r""" + Power Bijector. + This Bijector performs the operation: Y = g(X) = (1 + X * c)^(1 / c), X >= -1 / c, where c is power. + + The power transform maps inputs from `[-1/c, inf]` to `[0, inf]`. + + This bijector is equivalent to the `Exp` bijector when `c=0` + + Args: + power (int or float): scale factor. Default: 0. + + Examples: + >>> # To initialize a PowerTransform bijector of power 0.5 + >>> import mindspore.nn.probability.bijector as msb + >>> n = msb.PowerTransform(0.5) + >>> + >>> # To use PowerTransform distribution in a network + >>> class net(Cell): + >>> def __init__(self): + >>> super(net, self).__init__(): + >>> self.p1 = msb.PowerTransform(0.5) + >>> + >>> def construct(self, value): + >>> + >>> # Similar calls can be made to other probability functions + >>> # by replacing 'forward' with the name of the function + >>> ans = self.p1.forward(, value) + """ + def __init__(self, + power=0, + name='PowerTransform', + param=None): + param = dict(locals()) if param is None else param + super(PowerTransform, self).__init__(name=name, param=param) + validator.check_value_type('power', power, [int, float], self.name) + self._power = power + self.pow = P.Pow() + self.exp = P.Exp() + self.log = P.Log() + self.log1p = self._log1p_by_step + self.expm1 = self._expm1_by_step + + def _log1p_by_step(self, x): + """ + Log1p ops on GPU device or when device_target == GPU. + """ + return self.log(x + 1.0) + + def _expm1_by_step(self, x): + """ + Expm1 ops on GPU device or when device_target == GPU. + """ + return self.exp(x) - 1.0 + + @property + def power(self): + return self._power + + def extend_repr(self): + str_info = f'power = {self.power}' + return str_info + + def shape_mapping(self, shape): + return shape + + def _forward(self, x): + if self.power == 0: + return self.exp(x) + return self.exp(self.log1p(x * self.power) / self.power) + + def _inverse(self, y): + if self.power == 0: + return self.log(y) + return self.expm1(self.log(y) * self.power) / self.power + + def _forward_log_jacobian(self, x): + r""" + .. math: + if c == 0: + f(x) = e^x + f'(x) = e^x + \log(f'(x)) = \log(e^x) = x + else: + f(x) = e^\frac{\log(xc + 1)}{c} + f'(x) = e^\frac{\log(xc + 1)}{c} * \frac{1}{xc + 1} + \log(f'(x)) = (\frac{1}{c} - 1) * \log(xc + 1) + """ + if self.power == 0: + return x + return (1. / self.power - 1) * self.log1p(x * self.power) + + def _inverse_log_jacobian(self, y): + r""" + .. math: + if c == 0: + f(x) = \log(x) + f'(x) = \frac{1}{x} + \log(f'(x)) = \log(\frac{1}{x}) = -\log(x) + else: + f(x) = \frac{e^\log(y)*c + 1}{c} + f'(x) = \frac{e^c\log(y)}{y} + \log(f'(x)) = \log(\frac{e^c\log(y)}{y}) = (c-1) * \log(y) + """ + return (self.power - 1) * self.log(y) diff --git a/mindspore/nn/probability/distribution/__init__.py b/mindspore/nn/probability/distribution/__init__.py index 2f36c51bcc1..ea6b743e294 100644 --- a/mindspore/nn/probability/distribution/__init__.py +++ b/mindspore/nn/probability/distribution/__init__.py @@ -19,6 +19,7 @@ The high-level components(Distributions) used to construct the probabilistic net """ from .distribution import Distribution +from .transformed_distribution import TransformedDistribution from .normal import Normal from .bernoulli import Bernoulli from .exponential import Exponential @@ -26,6 +27,7 @@ from .uniform import Uniform from .geometric import Geometric __all__ = ['Distribution', + 'TransformedDistribution', 'Normal', 'Bernoulli', 'Exponential', diff --git a/mindspore/nn/probability/distribution/transformed_distribution.py b/mindspore/nn/probability/distribution/transformed_distribution.py new file mode 100644 index 00000000000..37f474e943d --- /dev/null +++ b/mindspore/nn/probability/distribution/transformed_distribution.py @@ -0,0 +1,94 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""Transformed Distribution""" +from mindspore.ops import operations as P +from .distribution import Distribution + +class TransformedDistribution(Distribution): + """ + Transformed Distribution. + This class contains a bijector and a distribution and transforms the original distribution + to a new distribution through the operation defined by the bijector. + + Args: + bijector (Bijector): transformation to perform. + distribution (Distribution): The original distribution. + name (str): name of the transformed distribution. Default: transformed_distribution. + + Note: + The arguments used to initialize the original distribution cannot be None. + For example, mynormal = nn.Normal(dtype=dtyple.float32) cannot be used to initialized a + TransformedDistribution since mean and sd are not specified. + """ + def __init__(self, + bijector, + distribution, + name="transformed_distribution"): + """ + Constructor of transformed_distribution class. + """ + param = dict(locals()) + super(TransformedDistribution, self).__init__(distribution.dtype, name, param) + self._bijector = bijector + self._distribution = distribution + self._is_linear_transformation = bijector.is_constant_jacobian + self.exp = P.Exp() + + @property + def bijector(self): + return self._bijector + + @property + def distribution(self): + return self._distribution + + @property + def is_linear_transformation(self): + return self._is_linear_transformation + + def _cdf(self, value): + r""" + .. math:: + Y = g(X) + P(Y <= a) = P(X <= g^{-1}(a)) + """ + inverse_value = self.bijector.inverse(value) + return self.distribution.cdf(inverse_value) + + def _log_prob(self, value): + r""" + .. math:: + Y = g(X) + Py(a) = Px(g^{-1}(a)) * (g^{-1})'(a) + \log(Py(a)) = \log(Px(g^{-1}(a))) + \log((g^{-1})'(a)) + """ + inverse_value = self.bijector.inverse(value) + unadjust_prob = self.distribution.log_prob(inverse_value) + log_jacobian = self.bijector.inverse_log_jacobian(value) + return unadjust_prob + log_jacobian + + def _prob(self, value): + return self.exp(self._log_prob(value)) + + def _sample(self, shape): + org_sample = self.distribution.sample(shape) + return self.bijector.forward(org_sample) + + def _mean(self): + """ + Note: + This function maybe overridden by derived class. + """ + return self.bijector.forward(self.distribution.mean()) diff --git a/tests/st/ops/ascend/test_bijector/test_exp.py b/tests/st/ops/ascend/test_bijector/test_exp.py new file mode 100644 index 00000000000..7e3f16a9a8b --- /dev/null +++ b/tests/st/ops/ascend/test_bijector/test_exp.py @@ -0,0 +1,105 @@ +# Copyright 2019 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""test cases for exp""" +import numpy as np +import mindspore.context as context +import mindspore.nn as nn +import mindspore.nn.probability.bijector as msb +from mindspore import Tensor +from mindspore import dtype + +context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") + +class Net(nn.Cell): + """ + Test class: forward pass of bijector. + """ + def __init__(self): + super(Net, self).__init__() + self.bijector = msb.Exp() + + def construct(self, x_): + forward = self.bijector.forward(x_) + return forward + +def test_forward(): + x = np.array([2.0, 3.0, 4.0, 5.0], dtype=np.float32) + tx = Tensor(x, dtype=dtype.float32) + forward = Net() + ans = forward(tx) + expected = np.exp(x) + tol = 1e-5 + assert (np.abs(ans.asnumpy() - expected) < tol).all() + +class Net1(nn.Cell): + """ + Test class: inverse pass of bijector. + """ + def __init__(self): + super(Net1, self).__init__() + self.bijector = msb.Exp() + + def construct(self, y_): + inverse = self.bijector.inverse(y_) + return inverse + +def test_inverse(): + y = np.array([2.0, 3.0, 4.0, 5.0], dtype=np.float32) + ty = Tensor(y, dtype=dtype.float32) + inverse = Net1() + ans = inverse(ty) + expected = np.log(y) + tol = 1e-6 + assert (np.abs(ans.asnumpy() - expected) < tol).all() + +class Net2(nn.Cell): + """ + Test class: Forward Jacobian. + """ + def __init__(self): + super(Net2, self).__init__() + self.bijector = msb.Exp() + + def construct(self, x_): + return self.bijector.forward_log_jacobian(x_) + +def test_forward_jacobian(): + x = np.array([2.0, 3.0, 4.0, 5.0], dtype=np.float32) + tx = Tensor(x, dtype=dtype.float32) + forward_jacobian = Net2() + ans = forward_jacobian(tx) + expected = x + tol = 1e-6 + assert (np.abs(ans.asnumpy() - expected) < tol).all() + +class Net3(nn.Cell): + """ + Test class: Backward Jacobian. + """ + def __init__(self): + super(Net3, self).__init__() + self.bijector = msb.Exp() + + def construct(self, y_): + return self.bijector.inverse_log_jacobian(y_) + +def test_inverse_jacobian(): + y = np.array([2.0, 3.0, 4.0, 5.0], dtype=np.float32) + ty = Tensor(y, dtype=dtype.float32) + inverse_jacobian = Net3() + ans = inverse_jacobian(ty) + expected = -np.log(y) + tol = 1e-6 + assert (np.abs(ans.asnumpy() - expected) < tol).all() diff --git a/tests/st/ops/ascend/test_bijector/test_power_transform.py b/tests/st/ops/ascend/test_bijector/test_power_transform.py new file mode 100644 index 00000000000..d76b67a8ee8 --- /dev/null +++ b/tests/st/ops/ascend/test_bijector/test_power_transform.py @@ -0,0 +1,109 @@ +# Copyright 2019 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""test cases for powertransform""" +import numpy as np +import mindspore.context as context +import mindspore.nn as nn +import mindspore.nn.probability.bijector as msb +from mindspore import Tensor +from mindspore import dtype + +context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") + +class Net(nn.Cell): + """ + Test class: forward pass of bijector. + """ + def __init__(self, power): + super(Net, self).__init__() + self.bijector = msb.PowerTransform(power=power) + + def construct(self, x_): + forward = self.bijector.forward(x_) + return forward + +def test_forward(): + power = 2 + x = np.array([2.0, 3.0, 4.0, 5.0], dtype=np.float32) + tx = Tensor(x, dtype=dtype.float32) + forward = Net(power=power) + ans = forward(tx) + expected = np.exp(np.log1p(x * power) / power) + tol = 1e-6 + assert (np.abs(ans.asnumpy() - expected) < tol).all() + +class Net1(nn.Cell): + """ + Test class: inverse pass of bijector. + """ + def __init__(self, power): + super(Net1, self).__init__() + self.bijector = msb.PowerTransform(power=power) + + def construct(self, y_): + inverse = self.bijector.inverse(y_) + return inverse + +def test_inverse(): + power = 2 + y = np.array([2.0, 3.0, 4.0, 5.0], dtype=np.float32) + ty = Tensor(y, dtype=dtype.float32) + inverse = Net1(power=power) + ans = inverse(ty) + expected = np.expm1(np.log(y) * power) / power + tol = 1e-6 + assert (np.abs(ans.asnumpy() - expected) < tol).all() + +class Net2(nn.Cell): + """ + Test class: Forward Jacobian. + """ + def __init__(self, power): + super(Net2, self).__init__() + self.bijector = msb.PowerTransform(power=power) + + def construct(self, x_): + return self.bijector.forward_log_jacobian(x_) + +def test_forward_jacobian(): + power = 2 + x = np.array([2.0, 3.0, 4.0, 5.0], dtype=np.float32) + tx = Tensor(x, dtype=dtype.float32) + forward_jacobian = Net2(power=power) + ans = forward_jacobian(tx) + expected = (1 / power - 1) * np.log1p(x * power) + tol = 1e-6 + assert (np.abs(ans.asnumpy() - expected) < tol).all() + +class Net3(nn.Cell): + """ + Test class: Backward Jacobian. + """ + def __init__(self, power): + super(Net3, self).__init__() + self.bijector = msb.PowerTransform(power=power) + + def construct(self, y_): + return self.bijector.inverse_log_jacobian(y_) + +def test_inverse_jacobian(): + power = 2 + y = np.array([2.0, 3.0, 4.0, 5.0], dtype=np.float32) + ty = Tensor(y, dtype=dtype.float32) + inverse_jacobian = Net3(power=power) + ans = inverse_jacobian(ty) + expected = (power - 1) * np.log(y) + tol = 1e-6 + assert (np.abs(ans.asnumpy() - expected) < tol).all() diff --git a/tests/ut/python/nn/bijector/test_exp.py b/tests/ut/python/nn/bijector/test_exp.py new file mode 100644 index 00000000000..13e3e09a34c --- /dev/null +++ b/tests/ut/python/nn/bijector/test_exp.py @@ -0,0 +1,71 @@ +# Copyright 2019 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""test cases for exp""" +import mindspore.nn as nn +import mindspore.nn.probability.bijector as msb +from mindspore import Tensor +from mindspore import dtype + +def test_init(): + b = msb.Exp() + assert isinstance(b, msb.Bijector) + b = msb.Exp(1.0) + assert isinstance(b, msb.Bijector) + +class Net(nn.Cell): + """ + Test class: forward and inverse pass of bijector. + """ + def __init__(self): + super(Net, self).__init__() + self.b1 = msb.Exp() + self.b2 = msb.Exp() + + def construct(self, x_): + forward = self.b1.forward(x_) + inverse = self.b1.inverse(forward) + return x_ - inverse + +def test1(): + """ + Test forward and inverse pass of exp bijector. + """ + net = Net() + x = Tensor([2.0, 3.0, 4.0, 5.0], dtype=dtype.float32) + ans = net(x) + assert isinstance(ans, Tensor) + +class Jacobian(nn.Cell): + """ + Test class: forward and inverse pass of bijector. + """ + def __init__(self): + super(Jacobian, self).__init__() + self.b1 = msb.Exp() + self.b2 = msb.Exp() + + def construct(self, x_): + ans1 = self.b1.forward_log_jacobian(x_) + ans2 = self.b1.inverse_log_jacobian(x_) + return ans1 + ans2 + +def test2(): + """ + Test jacobians of exp bijector. + """ + net = Jacobian() + x = Tensor([2.0, 3.0, 4.0, 5.0], dtype=dtype.float32) + ans = net(x) + assert isinstance(ans, Tensor) diff --git a/tests/ut/python/nn/bijector/test_power_transform.py b/tests/ut/python/nn/bijector/test_power_transform.py new file mode 100644 index 00000000000..50ea5dbd44c --- /dev/null +++ b/tests/ut/python/nn/bijector/test_power_transform.py @@ -0,0 +1,73 @@ +# Copyright 2019 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""test cases for powertransform""" +import mindspore.nn as nn +import mindspore.nn.probability.bijector as msb +from mindspore import Tensor +from mindspore import dtype + +def test_init(): + b = msb.PowerTransform() + assert isinstance(b, msb.Bijector) + b = msb.PowerTransform(1) + assert isinstance(b, msb.Bijector) + +class Net(nn.Cell): + """ + Test class: forward and inverse pass of bijector. + """ + def __init__(self): + super(Net, self).__init__() + self.b1 = msb.PowerTransform(power=0) + self.b2 = msb.PowerTransform() + + def construct(self, x_): + ans1 = self.b1.inverse(self.b1.forward(x_)) + ans2 = self.b2.inverse(self.b2.forward(x_)) + return ans1 - ans2 + +def test1(): + """ + Test forward and inverse pass of powertransform bijector. + """ + net = Net() + x = Tensor([2.0, 3.0, 4.0, 5.0], dtype=dtype.float32) + ans = net(x) + assert isinstance(ans, Tensor) + +class Jacobian(nn.Cell): + """ + Test class: forward and inverse pass of bijector. + """ + def __init__(self): + super(Jacobian, self).__init__() + self.b1 = msb.PowerTransform(power=0) + self.b2 = msb.PowerTransform() + + def construct(self, x_): + ans1 = self.b1.forward_log_jacobian(x_) + ans2 = self.b2.forward_log_jacobian(x_) + ans3 = self.b1.inverse_log_jacobian(x_) + ans4 = self.b2.inverse_log_jacobian(x_) + return ans1 - ans2 + ans3 - ans4 + +def test2(): + """ + Test jacobians of powertransform bijector. + """ + net = Jacobian() + x = Tensor([2.0, 3.0, 4.0, 5.0], dtype=dtype.float32) + ans = net(x) + assert isinstance(ans, Tensor)