!34560 Update space_to_batch_nd tensor api doc
Merge pull request !34560 from zichun_ye/code_docs_space_to_batch_nd
This commit is contained in:
commit
b92c70bcd7
|
@ -2724,41 +2724,23 @@ class Tensor(Tensor_):
|
|||
r"""
|
||||
Divides spatial dimensions into blocks and combines the block size with the original batch.
|
||||
|
||||
Args:
|
||||
block_shape (Union[list(int), tuple(int), int]): The block shape of dividing block with all value greater
|
||||
than 1.
|
||||
paddings (Union[tuple, list]): The padding values for spatial dimensions, containing 2 subtraction list.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The input tensor. It must be a 4-D tensor on Ascend.
|
||||
|
||||
Outputs:
|
||||
Tensor, the output tensor with the same data type as input.
|
||||
|
||||
Raises:
|
||||
TypeError: If `block_shape` is not one of list, tuple, int.
|
||||
TypeError: If `paddings` is neither list nor tuple.
|
||||
ValueError: If `block_shape` is not one dimensional when `block_shape` is a list or tuple.
|
||||
ValueError: If the length of `block_shape` is not 2 on Ascend.
|
||||
ValueError: If shape of `paddings` is not (2, M), where M is the length of `block_shape`.
|
||||
ValueError: If the element of `block_shape` is not an integer larger than 1.
|
||||
ValueError: If the element of `paddings` is not an integer larger than 0.
|
||||
Refer to :func:`mindspore.ops.space_to_batch_nd` for more detail.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU``
|
||||
``Ascend`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
>>> block_shape = [2, 2]
|
||||
>>> paddings = [[0, 0], [0, 0]]
|
||||
>>> input_x = Tensor(np.array([[[[1, 2], [3, 4]]]]), mindspore.float32)
|
||||
>>> output = input_x.space_to_batch_nd(block_shape, paddings)
|
||||
>>> print(output)
|
||||
[[[[1.]]]
|
||||
[[[2.]]]
|
||||
[[[3.]]]
|
||||
[[[4.]]]]
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
>>> block_shape = [2, 2]
|
||||
>>> paddings = [[0, 0], [0, 0]]
|
||||
>>> input_x = Tensor(np.array([[[[1, 2], [3, 4]]]]), mindspore.float32)
|
||||
>>> output = input_x.space_to_batch_nd(block_shape, paddings)
|
||||
>>> print(output)
|
||||
[[[[1.]]]
|
||||
[[[2.]]]
|
||||
[[[3.]]]
|
||||
[[[4.]]]]
|
||||
"""
|
||||
return tensor_operator_registry.get('space_to_batch_nd')(block_shape, paddings)(self)
|
||||
|
||||
|
|
Loading…
Reference in New Issue